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Relativistic Oscillator: Linearly Rising Trajectories and Structure Functions
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A new class of realizations of the dynamical group O(4, 2) depending on an arbitrary
function G is found. As a special case it is applied to a moving relativistic composite
object which in its rest frame is a three-dimensional oscillator. The wave equation is
exactly solved; the generators of the Poincare group are identified. It can be applied to
a moving "bag" or bound state where the constituents are bound by a confining potential.
The form factors and structure functions are discussed,
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Various relativistic oscillatorlike systems have
been considered to account for linearly rising
trajectories of composite hadrons. The equation
of Feynman, Kislinger, and Ravndal' and others
makes use of four-dimensional potentials which
involve a relative time: V=(x, "-x,")'. Hugh-
ston' considers two coupled Klein-Gordon parti-
cles with a common potential and arrives at a
trajectory which for massless constituents is 2VP

= 4an+ b, n = 0, 1, 2, . .. . Rising mass trajectories
have also been obtained from other algebraic
models. ' To make an oscillator-type system
move relativistically is a long-standing unsolved
problem. We derive here and solve exactly a co-
variant wave equation for a moving composite
system which in the rest frame of the system re-
duces precisely to the three-dimensional oscilla-
tor problem, and obtain the trajectory formula
which in the simplest case is linear in mass:

M„=an+b =a(2s+l)+b, s, l=O, 1, 2, .. . .

We give explicitly the complete generators of the
Poincard group for this problem, the states and,

L;, : Lp -—r +p

as mentioned, the spectrum. The covariant wave
equation immediately allows us also to give the
form factors and structure functions if the sys-
tem is coupled minimally to an external electro-
magnetic field. It can further be generalized to
constituents with spin.

The theory is based on a class of new realiza-
tions of the dynamical group O(4, 2) character-
ized by an arbitrary function G(r), which for
special choices of G(r) describe, in a unified
manner, the quantum mechanical Kepler, oscil-
lator, and Morse problems. Previously, the
oscillator has been described by the symmetry
group SU(3) and dyna, mical group SU(3, 1), and,
for the Morse problem, only the radial group
SO(2, 1) was known. The group SO(4, 2) allows us
to identify the Lorentz subgroup SO(3, 1) and
write a covariant relativistic wave equation for
moving composite systems bound by harmonic
forces in the same way as had been done earlier
for the moving H atom. ' lt is not easy to identify
the Lorentz subgroup in SU(3, 1).

The fifteen generators of the dynamical group
O(4, 2) in terms of the coordinates r and p of the
relative motion are given by
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Here L, and A generate the subgroup SO(4), L,
and M the Lorentz subgroup SO(3, 1), (I'„ I'„T)
are the generators of the radial SO(2, 1) dynam-
ical group, and I' „=(I „I ) is a vector-current
operator with respect to the Lorentz group. Fur-
ther K is the Hermitian radial momentum oper-
ator of the relative motion,

K = ', (r-"p+p r) = r '(F .p —i ). (2)

This generalizes the canonical transformation
of the radial equation between oscillator and
Kepler potential. ' The representation (1) is the
restriction of a covariant representation of O(4,
2) on a three-dimensional surface, and has a dual

7in which r-p, p- —r.
According to the general theory of relativistic

composite objects based on dynamical groups' we
ean write a covariant Dirac-type wave equation
of the form

(J"P &+ P I'4+ y)g(P) =0,

where P „is the (total) momentum of the moving
system and the general form of the current J~
linear in momentum and in the generators is

J„=I „+n,P „+o.+„I'„ (4)

with constants p, y, n„n3. The relativistic H

atom is well described by such an equation i n-
cluding the recoil corrections to the spectrum, '
form factors, ' and structure functions. "

For the oscillator the equation is an even sim-
pler special case of (3). With p =n, =0, o, = —1/

(r V „-~-'PP~+y)y=o. (5)

If the arbitrary function G(r) is chosen to be
G(r) =r, we get the well-known realization of
O(4, 2) appropriate for the Kepler problem. The
new cases are G=r'/2 appropriate for the oscil-
lator problem, and G=e '" for the problem of
Morse oscillator (8 wave). The unified forms of
the radial algebra SO(2, 1)= (I'„ I"„T)for these
cases have been known, ' but not the full relativis-
tic group SO(4, 2). The Hamiltonian in these prob-
lems is in the Lie algebra of SO(2, 1), an even
simpler case than the H atom, where not H but
r(H E) is a-linear combination of I'0 and I',.
The general case G(r) can be considered to be a
canonical transformation from the case G(r) =r
of the coordinates:

F- G(r)F/r =—r',
r 1 1 . G"r

P CP' ~G' G
E i 2rG" =P

SpecF, =s+l, +1; s=0, 1, 2, . . . . (7)

On the other hand, for the oscillator (G=vr'), I,
reduces to the operator

If2+ 0 4 +~2 (8)

where E is the oscillator energy. We see. from
(8) that the total angular momentum of the oscil-
lator L is related to the group generator L, by

L2 4L 2+3 (9)

Hence, l (l+ 1)= 4/, (I,+ 1)+z, or I = 2l, +v. Thus
expressing the spectrum of I', in (7) in terms of
l, we have the mass spectrum

M„=~X[n+ (n'+ 4y/A)'i'], n =~(2s+ I+-', ),

M„=-', A(2s+ l+-, ), s = 0, 1, 2, .. . . (10)

The complete solution of (5) is obtained by a
boost generated by I.„given in (1). The degen-
eracy of the levels is exactly that of the oscil-
lator and the meson spectrum is consistent with
this degeneracy as shown in Fig. l. (For the H

atom all the vertices in the diagram would be
filled. ) Equation (9) indicates that although we
have SU(3) symmetry in the quantum number n,
we have O(4) symmetry in the quantum number

(n+ I ), just like the Madelung quantum number of
the periodic table.

We remark that the coordirntes r, p are just ef-
fective labels for the internal dynamics, just as
in the case of Dirac's new wave equation with a
two-dimensional internal dynamics. "

The wave equation (3) is a special case of a
class of infinite-component wave equations de-
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The term 0. 3 in the current gives rise to accumula-
tion of the discrete spectrum and a continuum as
in the H atom. Here I „is a differential operator
in the canonical coordinates (r, p) only, i.e. , the
internal motmon. It ean also be written in terms of
the creation and annihilation operators g, , a,. ~ of
the oscillator. We now show that in the rest
frame Eq. (5) coincides with the Hamiltonian of
the oscillator.

With P „=(M, 0) the rest-frame dynamics is
given by

(I',M- A. 'M'+ y)/=0,

and for y=0,

A.I",g = Mg.

The spectrum of I", is known from the Casimir
operator of the SO(2, 1) which is l,(l, + I):
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ergy variable, and Q' = $(M'+ 2Mv). The thresh-
old behavior of W, for $-1 is consistent with the
single power law in the form factor G~(t) accord-
ing to the general arguments. "

0
0

—+ 0+ +

FIG. 1. The (n, J) diagram for the three-dimensional
oscillator levels (black dots) and comparison with the
meson levels. In a (qq) model for S = 0, J=l. For a
hydrogenic spectrum all corners of the diagram are
filled. For S = 1, we take the additional degeneracy
coming from l = J-1, J, J+ 1.

scribing relativistic composite objects for which
the form factors and structure functions have been
extensively studied, when the equation is coupled
to an external field by minimal substitution. We
now see that the special case (5) is actually real-
ized by the relativistic moving oscillator. In our
model of two spinless constituents, the electric
form factor is given by

1 2M'
g( ) (] 2t) (j 2g)2

and hence dominated by a single pole. The struc-
ture functions appearing in deep inelastic scat-
tering are also known explicitly. " In the scaling
limit one obtains

w, (q', v)=o(&/.)-0,
vW, (K v}= g'(l —g),

where Q' is the momentum transfer, v is the en-
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