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Interest is rapidly growing in numerical quan-
tum field theory. The emphasis has centered on
evaluating functional integrals; one introduces a
Euclidean space-time lattice to reduce the func-
tional integral to an N-fold Riemann or Grass-
mann integral and performs a Monte Carlo evalua-
tion of these integrals. A numerical evaluation
of a functional integral is equivalent to solving
an operator quantum field theory. However, this
evaluation ignores operator properties of the
theory such as the equal-time commutation rela-
tions (ETCR's). Rather, it is the summation
over all possible classical configurations which
elicits the characteristic properties of the quan-
tum theory. Thus, an accurate evaluation of a
functional integral requires a great many Monte
Carlo passes through the lattice. In this paper,
we present an alternative approach to the num-
erical solution of a quantum field theory, in
which the operator field equations are solved di-
rectly on a Minkowski lattice. In our approach,
we do operator time-stepping, which requires
only one pass through the lattice.

We use the method of finite elements, a tech-

nique widely employed to solve numerically partial
differential equations (PDE's) arising in classical
continuum mechanics and fluid dynamics. ' The
method of finite elements consists of three steps:
(i) Decompose the domain on which the PDE is
to be solved into a set of contiguous nonover-
lapping patches called finite elements. (ii) On

each finite element approximate the solution to
the PDE by a low-order polynomial. Adjust the
coefficients of each polynomial so that the func-
tions (and sometimes their derivatives) are con-
tinuous across adjacent patches. (iii) Impose
the PDE at one point on every patch and impose
boundary conditions on the patches adjacent to
the boundary of the region. This procedure gives
a system of algebraic equations for the coeffi-
cients of the polymonials. Solving these equa-
tions determines an approximate solution to the
PDE.

The novelty of this paper is that we have been
able to use this same technique to solve operator
field equations. Now, the coefficients of the
polynomials on the finite elements are operators,
whose properties are determined by the ETCR's.
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We illustrate the conventional finite -element pro-
cedure by solving a first-order differential equa-
tion: given dy/dx =f (x, y) and y(0) =y„ find y(a)
for a)0. We introduce W finite elements of equal
length h = a/N. On the kth finite element, where
x =(k -1)h+t 0 (t &h we represent the solu-

y(x) by the linear function y(x) = (1 —tlh)y»,
+(t/h)y, . These functions form a continuous ap-
proximation to y(x) for 0 - x - a. Notice that on
the first finite element, y(x) satisfies the initial
condition y(0) =y,. We impose the differential
equation at one point t„0 t, -h, on each finite
element. This gives the difference equation

(y„-y, ,)/h =f((k —l)h + t„(l —t,/h)y, , + (t, /h)y„), k=lf Q ~ ~ j N

a =p'/2+ V(q),

the Heisenberg equations are

dq(t)/«=p(t), dp(t)l«=f(q(t)),

(2)

where f(q) =-V'(q). The quantum mechanical
problem consists of solving (3) for the operators
p(t) and q(t) given the ETCR

[q(t), p(t)] = i.
We solve this problem first on a single finite

element. We approximate q(t) and p(t) by linear
functions of t:

q(t) =(1 —tlh)q. +(tlh)q„

p(t) =(1 —tlh)p. +(tlh)p„

0-t-h.
(5)

Substituting (5) into (3) and evaluating the result
at the center of the time interval t, =h/2 gives

To find y(a) =y„, we repeatedly solve the alge-
braic equations (1) for the unknowns y„y„y„

As N- ~, p„, the N-finite-element
approximation to y(a), becomes exact.

Now consider the problem of solving the Heisen-
berg equations of motion for a one-dimensional
quantum system. If the Hamiltonian is

!
Adding (8) and (9) gives

[n, pi]=l:q., p.]=i (10)

Thus, we have proved that the method of finite
elements is consistent with the ETCR's on a
single finite element. Clearly, for a collection
of N elements this argument may be iterated to
show that the difference equations in (6) and (7)
are consistent with the ETCR's in (4) at the end
points of each of the finite elements.

We make two observations. First, the ETCH, 's
hold only at the end points of a finite element,
but not at any interior point. Second, the result
in (10) depends crucially upon our having imposed
the Heisenberg equations in (3) at the center of
the finite element, t=t, =h/2. For any other
value of t„(10)is false. Thus the operator
properties of quantum mechanics uniquely deter-
mine the value of t,. There is no such constraint
on the value of t, for a c-number differential
equation. '

Even though (6) and (7) are operator equations,
we can solve them explicitly for p, and q„ in
terms of p, and q,. First, we solve (6) for p, :

P =h '(q. -qo) Po

(q, —qo) lh = l(po+Pi)

(p, —p.)/h =f (v(q. +q )).
(6)

(7)

and use this result to eliminate p, from (7):

2 4—
h Po —

h2 qo —g'(2(qy+qo)) p (12)

Equations (6) and (7) are a discrete form of the
equations of quantum mechanics. But, are they
consistent with the ETCR's'? At t=0, (4) reads
[q„p,]=i. The question is, if we solve (6) and

(7) simultaneously for the operators p, and q„
will the commutator [q„p,] also have the value
i 'p We can evaluate [q„p,] for any function f:
Commute (6) on the right with p, +p„

where g(x) =f(x) -4x/h' is the function which com-
pletely characterizes the dynamical content of
this quantum theory. The solution to (12) is
given in terms of g ', where g '(y) is the solu-
tion to the classical equation y =g(x). From (12)
we have

q, = -q, +2g '(-(2/h)p, —(4/h')q, )

[q|—qo~ Po+Pi] = 0
~

and commute (7) on the left with q, +q„

(8) and from (11) we obtain

p, = -p, -„—q, + „-g-'(-(2/h)p, —(4/h')q, ) . (14)

[q.+q„p, —p. l = o. (9) The result in (13) and (14) is the one-time-step
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solution of the quantum mechanical initial-value
problem in (3).' We generalize to N time steps
(N finite elements) by iterating (13) and (14) N
times to express p~ and q~ in terms of p, and q, .
Note that the solution takes the form of a con-
tinued (nested) function A+@ '(A+@ '(A+g '(A
+. ..))). If [q„p,] had not turned out to be i,
but had differed from i by a (presumably) small
q-number part that vanishes with the spacing h,
then we would not be able to obtain the N-finite-
element solution by iteration, and indeed we
would not even be able to solve for p, and q, .

Now we show how to generalize. this method to
quantum field theory. Consider a scalar field
theory in two-dimensional Minkowski space. We
write the operator field equations as a coupled
first-order system so that we can continue to
use linear approximations to the fields on finite
elements:

~ = A ~ Y = Px~ ~l —Yx +f(P) = 0 ~

We introduce rectangular finite elements whose
length in the time direction is h and in the space
direction is A. On the m, n element, the field p
is approximated by the bilinear polynomial

where the coefficient y „ is the value of the field operator at the site (m, n). The fields ll and Y are
represented in a similar way.

Our objective is to show how to advance one step in the time direction. We consider a single hori-
zontal row of M finite elements and impose (15). The result is the following system of difference
equations:

m-I 0 m 0 m-l, l m 1) ( ) (+m 1 Pm-1 1 0 m 0 Vm-1 0)1
1
&(Y 1,0 Y,O+ Y -1,1+ Ym, l) (2~) (ql, 1 + %,O P 1, 1 'P 1,0) l

(2I1)-'(ll, + V, , —V„0—11, 0) —(2k) '(y, +Y, —Y, , —Y, ,)
1=f ( (V. , 0+ V-. , O+ q. . .+ V'. , ,)),

pyz= 1, 2, . . . , M. We take each finite element for y and m to represent one degree of freedom and define
the dynamical variables

c „=-,'(y „+q, „), Il „=-,'(v „+v, „).
If we eliminate y „ from (17) and express the resulting equations in terms of the dynamical vari-

ables we obtain a system of 2' equations whose general structure is'

II 0+II, =2I1 '(C, —C ),
N

11. , -11. , = Q g. ,(c. ..c, ,)+y(c

(19)

(20)

[c... II, ]=(i/n)5, ,
(21)

The consistency problem here is to show that if
(21) holds for n =0 then by virtue of (19) and (20)
it also holds for n = 1.

The proof of consistency is not simple. There
are three steps. First, we eliminate II „ I
=1, 2, 3, . . . , M, from (20) using (19). Thus, (20)

m =1, 2, 3, . .. , M. Here S is a symmetric ma-
trix and E is a nonlinear function simply re-
lated to f in (15).

When written in terms of 4 „and II „, the
ETCR's for'the fields, [cy(x, t), &(y, t)]=»(x -y),
become

[c, „,c, „]=o, [11... II, .]=0,

where G is simply related to E. Because

[11, , +2I -'C. , „rl, , +2I -'C, ,] =O,

we can in principle solve (22) for C', +C, in
terms of II, +2h 'C', . It follows from (21) at
n=0 that

[c„,+c, „c, , +c, ,]=0. (23)

~ takes the form

0 o+ —42

N

„.(c„,+c„,)+G(c. , +c. ,),
j =1

j =]., 2, . . . , M,
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Second, we replace G in (22) by eG, where e is
a small parameter. Then, assuming that G has
a Taylor series, we solve for 4, as a pertur-
bation series in powers of ~. We can show that
to all orders in powers of ~,

[C,. „C, ,] =0, (24)

We complete the proof by using the same proce-
dure as that leading to (10): We commute (19)
and (20) with 4, ,+ 4, , and add the resulting
commutators to establish (21) for n = l. It is
quite interesting that this proof depends critical-
ly on the symmetry of the matrix S; the result
is not sensitive to the choice of the nonlinear
function f except for the assumption that it has
a Taylor series expansion. Having established
the consistency for the first time step, by induc-
tion (21) holds for all values of n. This proof
also shows how to solve the operator equations
(19) and (20) algebraically.

We conclude by illustrating the use of the finite-
element approximation for some very simple sys-
tems, the harmonic oscillator, whose Hamilton-
ian is H =p'/2+m'q'/2, and the anharmonic oscil-
lator, whose Hamiltonian is H =P'/2+3. q'/4. For
the harmonic oscillator, the operator equations
(6) and (7) are linear and the solution in (13) and
(14) can be written in matrix form: (p„q,)
= M(p» q,). M can be written as a similarity
transf orm of a diagonal matrix D, M = QDQ ',
whose entries are

Thus the values of p and q after N time steps
are determined by M"= QD"Q '; hence, q~ is
a combination of d»" and d»". For mh « I, we
have d»", d»"=e'" "'. In the limit as K- ~
and h -0, Nk = T. Thus q(T) is a linear combina-

so long as S is a symmetric matrix. This is the
difficult part of the proof.

Third, combining (23) and (24) gives

(25)

tion of e' ', from which we can identify the en-
ergy gap ~=E, -E =m.

The energy gap for the anharmonic oscillator
is known to be bE =E, -E,=(1.08845)A. ' '. We
can calculate bE accurately from (6), (7), (10),
and the equation

(n[p[ m&=z(E„-E„)&n~ q~ m&,

where ~n& is an eigenstate of the Hamiltonian B
with energy E„, using a variational procedure in
which we increase the number of states and the
number of time steps simultaneously. Using
just one finite element we obtain bE=(g/2)~'
= (0.793 70)A.'/' which is 27/& off. Two finite ele-
ments gives bE =(3A/2)'/'=(1. 14471)A. ' which
is 5/p off.

More interesting than computing eigenvalues,
we can apparently compute from the difference
equations (17) unequal-time commutators, light-
cone commutators, and S-matrix elements. We
are working on these computations in various
models.
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Of course, requiring that Poisson brackets be pre-
served gives the same results for a classical Hamilton-
ian system.

3An intriguing question is whether {13)and (14) might
be used in combination with [qo, p 0] =i to find a spec-
trum-generating algebra. Another interesting question
is what to do when g ~ is multiva1ued.

The matrix S is a numerical matrix containing the
lattice spacings h and k. It is symmetric because with
properly chosen boundary conditions the operator V'
in the continuum is symmetric.
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