
VQLUME 50, NUMBER 19 PHYSICAL REVIEW LETTERS 9 MAv 1983

Static and Dynamic Critical Magnetic Fields in Ising Spin-Glasses
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By Monte Carlo simulations it is shown that the magnetization M(T, H) of the two-dimen-
sional nearest-neighbor Edwards-Anderson model is proportional to H, essentially in-
dependent of temperature T, for fields H «, q(T), with g q(T) ~T' ~, the exponent be-
ing g = 0.28+0.06. Irreversible behavior on a time scale t sets in for a field H, (t) where
H g)/T'(t) nearly follows the De Almeida —Thouless line, although no static nonzero
freezing temperature T& exists. Consequences for the interpretation of related experi-
mental work are discussed.

PACS numbers: 75.40.Dy, 75.10.Hk, 75.30.Kz

In the infinite-range model of spin-glasses, "
De Almeida and Thouless (AT)' have found a criti-
cal magnetic field H, (T), with H, (T) ~(1 —T/Tz)"'
for temperatures near 1"&, for the onset of repli-
ca-symmetry breaking. " For H&H, (T) the model
is nonergodic, ' and truly irreversible behavior
sets in. These model predictions very recently
have inspired a large number of experiments
where various critical magnetic fields for real
spin-galss materials were identified (e.g. , Refs.
6—10). The first experiment' locates a field
H, '"(T) from the temperature below which the
field-cooled magnetization M(T, H) is essentially
temperature independent. Note that it is widely
believed that by slow field cooling one finds the
equilibrium magnetization. Other methods' "lo-
cate various critical fields H, (t) from studying
where slow magnetic relaxation disappears. The
temperature variation of these fields follows
rather nicely the form H, (t) ~r-1 —T/Tz(t)]"', al-
though both Tz(t) and H, (t) depend on the time
scale t of observations. ' " These findings have
been widely interpreted as evidence that real spin-
glasses do have an Edwards-Anderson-type (EA)
phase transition and an AT line. Of course, this
conclusion is at variance with the theoretical pre-
diction that the lower critical space dimension
d* for this transition is d*=4 (see, e.g. , Refs. 11-
14), and hence T&=0 for ~=3.

In this Letter we elucidate this problem by
careful Monte Carlo studies of square Ising lat-
tices with nearest-neighbor bonds distributed ac-
cording to a Gaussian, P(J) ~exp[ —J'/2(~J)'].
For this model there is overwhelming evidence"'"
that 1'z =0 in thermal equilibrium; Monte Carlo
studies over ' time scales" of 10' to 10' Monte
Carlo steps per spin indicate onset of very slow
relaxation of the spins near kT~ (t)/~J~1,"and
many properties are (qualitatively) very similar" '"
to experiment. Identifying critical fields in this
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FIG. 1. Susceptibility M/(H/~) plotted vs tempera-
ture for two values of the field, for 60 &&60 lattices with
periodic boundary conditions. The field-cooled mag-
netization (full circles) is obtained from averages over
5—30 runs where Twas cooled down fromkT/~=1. 6
to T=0 at a rate dT/cg =6.25x10 J/kMCS (MCS, Monte
Carlo steps per spin). Other symbols show results
where the system is cooled in zero field to the con-
sidered temperature and then the field is applied for
a given time as indicated. Arrows illustrate the iden-
tification of critical fields (see text). Units of H are
such that the zero-field susceptibility simply is ~/0 T.

model system (if they exist there also!) by meth-
ods analogous to the experimental ones hence
should greatly clarify the significance of these
critical fields.

indeed the field-cooled susceptibility ~(T,H)/
II is found to be independent of 1' for low tempera-
tures, as shown by typical data in Fig. 1. These
"plateau values" M(T -O, H)/H become indepen-
dent of cooling rate IdT/dt I for small enough
rates (Fig. 2), which is evidence that we observe
the equilibrium magnetization. " For H/'J»1
M saturates and thus M/H~H ' trivially; but for
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FIG. 2. I og-Iog plot of susceptibility M(T —0) /(Jf/
~) plotted vs field. Full circles denote field-cooled
magnetization for (dT/dt (=2.5 x10 ~~/kMCS, crosses
for (dT/dt (= (6.25 and 1.5) x10 bj/kMCS. Open .

squares denote experimental data of Ref. 6 for Ag-.

Mn(10.6$) (on arbitrary scales). Triangles are the
magnetization obtained from systems cooled to T =0
vnthout a field.

(b)

H/kTi

0.1 & H/&J & 1.0 we observe a nontrivial Power
law M/H~H ", withx=0. 28+0.06. Thus there
is no contradiction with the fact that the ze~o-
field susceptibility for this model is divergent at
T =0 [simple Curie law )( =&&/kT (Ref. 13)f. We
cannot, however, obtain this exponent with higher
precision by studying smaller fields: (i) At small-
er fields a still smaller cooling rate would be re-
quired, because at too high cooling rates the pla-
teau va, lue observed for M is too small (cf. full
circle at H/aJ=0. 05, Fig. 2). (ii) While we esti-
mate that the correlation length GAEA (measuring
the decay of [(S,S~)r'],„with distance R/is much
smaller than the lattice linear dimensions in the
regime of T, H on which Fig. 2 is based, ""for
smaller H also much larger lattice sizes would be
needed. Experimental data' behave like M,~H

~H '" for intermediate fields, while the effective
exponent g crosses over to a still smaller value
(=0.03, Fig. 2) at smaller fields. The question
arises whether this crossover reflects equilibrium
properties or (as in the simulation) too large cool-
ing rates at the smgl@st fields. In fact, after
cooling AuFe(8%) in small fields the magnetiza-
tion still has not relaxed to its equilibrium value;
see Lundgren, Svedlindh, and Beckmann. " Care-
ful experiments on this question (and at still small-
er fields) are needed, as the effective exponent x
must be strictly zero for H -0 if the dimension-
ality d is at (or above) d*, while a nonzero value
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FIG. 3. (a) Static critical field II, q(T), open circles,
and dynamic critical fields P, (t) for t =600 MCS (cros-
ses) and t =6000 MCS (triangles) plotted vs tempera-
ture. (b) Normalized dynamic critical field plotted vs
normalized temperature [note that Tf (g) is observation-
time dependent; see, e.g. , Ref. 21].

of x is evidence for d (d*.
As T - 0 also the magnetization M, (t) found

from putting systems cooled without field into a
field becomes time independent, because the slow
relaxation (involving barrier hopping) is com-
pletely frozen out (Fig. 1). The resulting suscep-
tibility also follows a power law, M/H ~ H', with
y = 0.43 in the regime of fields where our data
are most reliable.

From our data we obtain the field H, '~ (T)
where the plateau begins (Fig. 1, arrow with open
circle) and the fields H, (t) [defined from the
points where M, (t) and M differ by 3%, other ar-
rows in Fig. 1). These critical fields are dis-
played in Fig. 3. The static field H, '~(T) is con-
sistent at small T with a variation H, '~(T) ~T"",
which one predicts from a scaling assumption
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X(T,H) ~T 'X((kT/&J)' "/H) which yields &-inde-
pendent plateau values if X(&) ~~" for «( I.. The
nonlinear susceptibility

x. =&'x/&H'I, =(&/&I')'2 (&sP &,') „

then varies as X „ i ~T "=T ', which js con-
sistent with the observed behavior y„i~ T '."'"
This interpretation suggests that II, '~ is not

sharply defined, but only reflects a crossover at
&=1. For larger T the curve describing H, '"(T)
in the H-T plane then strongly increases and
bends backwards again (Fig. 3, broken curve).
Such a behavior is reminiscent of the variation
of the position of the static susceptibility maxi-
mum of CuMn and Gdhl spin-glasses in very
small fields. '2

The dynamic critical fields H, (t) increase mono-
tonically as T decreases. This is expected, since
the curves H, (t) basically represent contours of
constant relaxation time in the H-&' plane, and
since we expect that with increasing fields both

(E A and the free-energy barrier dominating the
relaxation time"'" will decrease. But the fact
that H, (t) in scaled form nearly follows the AT
line 5'ig. 3(b)1 is a surprise: Recall that there
is no equilibrium freezing transition and hence
also no replica-symmetry breaking in our model.
Thus we feel that Fig. 3(b) rather reflects dynam-
ic scaling associated with the transition at T =0.

In conclusion, we have shown that a variety of
characteristic fields exist for spin-glass models
even without a static freezing transition. A physi-
cal explanation for the temperature dependence of
these fields remains to be given. Comparing our
results with real materials encounters the diffi-
culty, of course, that an Ising spin might corre-
spond to a whole cluster of strongly correlated
magnetic moments. ~ Without performing such a
coarse graining explicitly, it is not possible to
convert quantitatively the scales for t, H, etc. ,
from the computer experiment to real systems.
But the qualitative similarity of the results is
again encouraging, and thus the folklore" map-
ping of mean-field results (valid for the infinite-

range model) to the real world has to be con-
sidered with great care.
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