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One-Dimensional Ising Model in a Random Field
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The one-dimensional Ising model in a random field is studied with use of a functional
recursion relation. For temperatures exceeding a given value, the fixed function of the
relation is found and shown to be a devil's staircase. From this result it is possible to
evaluate the free energy to arbitrary precision. In the field-strength-temperature plane,
a crossover line corresponding to the onset of frustration is found.

PACS numbers: 75.40.Dy, 05.50.+q

Quenched impurities in magnets can cause
randomness in the exchange interactions and
local moments. A uniform magnetic field applied
to a disordered magnet can also induce local
random fields, conjugate to the order parameter. '
These random fields destroy, according to both
theory' and experiment, ' long-range magnetic
order for spatial dimensionalities d less than
some critical d, . There has been considerable
controversy about whether d, is 2 or 3 for Ising
magnets and more generally about the relative
importance of thermal fluctuations and quenched
randomness. Because there are no exact results
for Tg0, even for d=1, we have studied the
finite temperature properties of the one-dimen-
sional Ising ferromagnet in a binary random
field (+h,). This problem is equivalent to the
mixed ferromagnetic and antiferromagnetic

chain (a d = 1 spin-glass) in a uniform magnetic
field. It has been studied numerically' for gen-
eral T and analytically" for T-0. Such sys-
tems can be realized experimentally in mixtures
of quasi one-dimensional magnetic materials. '

Our results are best described in terms of the
local magnetization m = (S,. ), which can be probed
with use of nuclear magnetic resonance or Moss-
bauer spectroscopy. For large ratios of the
random-field amplitude h, to the exchange coup-
ling J„or high temperatures (region I of Fig.
1), every spin S; follows its local ra.ndom field.
Furthermore, m takes on only discrete values
and so its integrated probability distribution
Q(m) is flat nearly everywhere; indeed Q(m) is
an example of a nonanalytic "devil's staircase"
function (Fig. 2). As h, is reduced, we cross a.

transition line into region II where m can take

2.0

I I I I

I

I I I I
I

I I I I
I

I

I.O

0.5—

I I I
)

I I I

H

I
(

I I I I

J

I I
'I

H

O

I.O

oA

0.0,„ I

rw— B

N—0.5—
CL

0.0
—C

I I I I

I I I I

I I I I I I I
I I I I I I

I I I I I I I

I I I

\

\

1
l
l
i

I I I i I I I I I I

T/Jp

p1G. 1. Phase diagram in ho/Jo T/Jo plane. The-
solid lines are transition lines for P(z). P(z) is a
devil's staircase in regions I and II. The dashed line
corresponds to onset of frustration. P{z) for points A,
B, and C is shown in Fig. 2.
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FIG. 2. P{z) for J= 1.1, from Eq. (11) for (a) @=1.4,
and {b) from iterated evaluation (n = 1 to n = 40) of Eq.
(9) for Q = 1 and (c) 0 = 0.2. We use g(z) = (z —1)/{z
+ 1) rather than z as ordinate. From left to right, the

l. 1arrows in {a) correspond to zl. , zI. {2) zU(2)
respectively.
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on values in a co~ti~uum, sekicA, includes zero. If
m = (S, ) = 0, then the local random field h, is
precisely cancelled by the effective field due to
the neighboring spins Si, and S;„, and so S; is
fmsA'ated. For T -0 the transition line corre-
sponding to the onset of frustration terminates
at h, /J, = 2 which is also where the ground-state
entropy first becomes nonzero. As we continue
to decrease h, and T we find an infinite series of
further transition lines related to increasing
smoothness of Q(m). Eventually for T «4, and

h, & T exp(-2J, /T), Q(m) becomes indistinguish-
able from a Gaussian distribution.

The starting point is the Hamiltonian

3C/T=-4 Q S;S;~,+ Q h, S;,
i =1 i =1

where J= J,/T and where S;= + 1 is the spin at
site i. The random field variables h, are un-
correlated and have the same distribution func-
tion p(h, ). The partition function Z =—P(s) e
can be written as

where T; is a 2 &2 random matrix,

exp(J+h;) exp(-J -h, )

exp(-Z+h, ) exp(Z —h, )

vn = = Tn ' Tn-i ' ' ' Ti

Equation (4) yields a recursion relation for the
tangent z„of the angle between v„and (,'),

z„=f(h, z„„),
where

(5)

f()J, J) =e'"
( J „)

To evaluate Z we follow Brandt and Gross' and
study the evolution of a two-component vector on
successive application of T,. :

For a pure system, h„=h and ~„ is uniquely de-
(2) fined. As n —~, z„approaches the simple fixed

point

z(h) =f(h, z(h)) = -exp(2J+h) sinhh+e" (1+e'"sinh'h)'~'. (7)

For a random system, z„will itself be a random
variable whose integrated distribution function is
the quenched average

P„(z) = g J dh, p(h, )e(z -z„),. (8)
i =1

where 0(z) is the Heaviside step function. From
Eq. (5) we obtain the recursion relation

P„„(z)= J dh t (h)P„(f(h, z)) .

! If the collection of fixed points z =—lim„z„has
a well-defined integrated distribution i (z), then
P(z) must be a fixed point of the functional re-
cursion relation Eq. (9).

For the remainder of this paper, we restrict
our attention to discrete random fields where h,.
=+h =h, /T a.nd h, = -h = -h, /T each occur with
probability —,. In this case P(z) satisfies

P( !) JIP(8 J J ) PJ(8 J J.
)I

(10)

Now we construct' the solution to Eq. (10). Since
the z„are nonnegative, P(z) vanishes for z &0.
Because P(z) is monotonically increasing and

f (+h, z) has a zero at z =e ', it follows that
P(z) =0 for z&e ".Repetition of this argument
implies that P(z) =0 as long as z &f (+'h, z). Since

f (h, z) &f(-h, z) for e ' &z &e' ~, P(z) = 0 for z

&z~ where z~=f(h, z~) or z~=z(h) [see Eq. (7)].
Similarly, P(z) =1 if z &z U where z ~ =z(-h).
Now, the first term in Eq. (10) is 1 for z &z~(-,')
where f(h, zL(1/2) )=z U, while the second term
is 0 if z &zU(-,') where f(-h, zU(1/2)) =z~, so
P(z) =

2 if z~( —,') &z &zi,(z) [Fig. 2(a) J. The values
of z U

(-,') and zi, ( —,') are easily derived from Eqs.

1(6) and (7). Repeating this argument, we find
that at the mth iteration P(z) = (2p —1)/2 for

zi ([2p —1]/2 ) &z &z~([2p —1]/2 ),
where

zi([2p —1]/2 ) =f(h, zg([2p —1]/2™-1))

z U ([2p —1]/2" ) =f(h, z U([ 2p —1]/2 ') ),
for 2p —1& 2 ', and

zL([2p —1]/2 ) =f(-h, z, ([2p —1]/2 ' —1)),

(11b)

zU([2p —1]/2 ) =f(-h, zU([2p —1]/2 ' —1)),
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for 2p —l&2 '. Equations (lla) and (lib) give
P(z) to arbitrary precision. As m-~, P(z) be-
comes a devil's staircase [Fig. 2(a)]: an infinite
series of rising steps, each of finite width. The
widest step is for P(z) = —,'. A necessary and suffi-
cient condition for every step to be of finite width
is that z~( —,') &zU(~). This condition is first vio-
lated when f(h, 1) =z„or

e"=1+2cosh(2h) . (12)

Equation (12) defines a line which divides the h/J-
J ' (or T) plane into a small- J, large-h regime
where P(z) is a devil's staircase, and a large-J,
small-h region where we expect P(z) to be smooth
[Fig. 2(b)]. This crossover line separates re-
gions II and III in Fig. 1; it intersects the J axis

f h, f(h, . . . ,f(h, 1)), . . . )
=—f ("1(Jh) =z (16)

P(z) will take the form (15) near z =1. Further-
more, for at least some J and h such that f '"'(J,
h) &z U, P(z) can be calculated at the n-stable
fixed points characterizing the pure chain in a
staggered field of period n. Condition (16) de-

P(el =-, (P(f(k, f(-h, z)) +P f ( —h, f(h, z)))) +

Equation (14) implies that where f( -h, f (h, z,) )
=z, and f(h, f(-h, z,) ) =z„P(z,) = —' and P(z, ) =~ .
The bistable fixed points z, and z, correspond to
an Ising ferromagnet in a staggered field, or
equivalently, an antiferromagnet in a dc field of
strength h. Letting $z» denote the correlation
length of these pure systems, we find that near
z, and z„P(z) has a power-law singularity, as
in Eq. (13), with exponent (21n2) $„F~.

Equation (14) becomes invalid when f(h, f(h, 1))
=zU. For these values of J and h, the behavior
of P(z) near z = 1 is similar to that at z v and z~:

P( ) =—l+ 'sg ( —1)I

We can also iterate Eq. (10) a second time,
which yields P(z) =+ + . . . , ~7 at the tristable
fixed points corresponding to the pure Ising ferro-
magnet in a staggered field of period three. In
general, if

(h = 0) at J= —,
' ln3, and approa, ches the asymptote

J=h in the limit T-0 where J, k-~.
Even though we cannot write down the solution

to Eq. (10) when z~(-,') &zv(-,'), it is still possible
to find P(z) near certain z. In particular, as z

zU

P(z) —
1 e(z z) & "2 &Ftvi (13)

[cothJ—1](z —1)P' (z) +2h'P "(z) = 0, (17)

whose solution is the integral of a Gaussian with
standard deviation (2h)'~'(cothJ -1)'~'.

We have established the angular distribution of
the vectors v„as n -~. We still wish to know

how, for a given z„=tan0„, the length Iv„ I is
distributed. Because Iv„I-~, as n-™,it is
useful to introduce the variable

y„= —(2n) -' ln(v„'+ v„-) . (16)

Using recursion relations similar to those for z„
we find that as n - ~, the probability distribution
of y„becomes, for a given z, a delta function
centered at F(z) where

where c is a. positive constant and )„M the corre-
lation length of the pure Ising ferromagnet in a
uniform field h. Equation (13) may be checked by
substitution into Eq. (10). A similar result
holds near z ~.

Consider now the functional equation obtained
after application of Eq. (10) to the terms on its
right-hand side If.f(h, f (h, z) )&z v and f ( -h,
f(-h, z)) & z~ this equation reduces to

(14)

fines a family of curves in the h/J-J ' plane
(solid lines in Fig. 1); these curves terminate
at the J- ~ (or T-0) phase transition points'
where J/h is an integer m. However, we do not
recover the phase transitions found by Derrida
and co worke-rs' for 2J/h assuming odd integer
values. In the limit h -0, our curves meet the J
axis (h =0) when $(;M =[ln(coth J)] '=m/ln2, a
result confirmed by linear-response theory. "
As h-0 and J-~, with he' finite, P(z) becomes
progressively smoother [compare Figs. 2(b) and

2(c)] and (10) eventually reduces to the differ-
ential equation

F(z) = ——,ln[2cosh 2J+ze'"+ z 'e '"] —a ln[2cosh2J +ze '" +z 'e'"] .
We obtain the quenched average of the free energy from Eqs. (2), (4), (18), and (19):

F = f"F(z) [dP(z)/dz ]dz,
2m I

=F(z()) —Q Q (F(zv([2p —1]/2 )) —F(z~([2p —1]/2 ))J .
m=1 P =1

(19)

(20)

(21)
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Far from the crossover line, the series con-
verges rapidly and it is a good approximation to
keep only the first term. In the limit T-O,
where h and J are large, the crossover point is
at h/J = 1. For h/J & 1, keeping only the lowest
term gives

I' = - —,'(J+h) ——,'In[e'"+e'" '"] . (22)

If T-O, E=-h for h/J&2 and E=-J—2h for 1
&A./J&2. Thus we recover the first of the T-0
phase transitions. ' At low but finite tempera-
tures, the transition is smeared out.

We can also use P(z) to determine the local
magnetization distribution. Namely,

z,z, —exp(-2h, )

z,z, +exp(-2h;) ' (23)

e' & 2coshh. (24)

As h -0, Q(m) is a devil's staircase if condition
(24) is satisfied, "and numerical work suggests
that Q(m) remains a devil's staircase for large
h as well. Once (24) is violated, (S, ) is allowed
to be zero and the threshold line defined by (24)
thus corresponds to the onset of frustration. In-
deed, as T-O, this line approaches 2J/h =1,

where z, and z, are independent random varia-
bles, both with integrated probability distribution
P(z). Equation (23) implies that the probability
density dQ/dm for m vanishes at m = (S, ) = 0
when

which is where the ground-state entropy first
becomes nonzero due to frustration.
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