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One-Dimensional Ising Model in a Random Field
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The one-dimensional Ising model in a random field is studied with use of a functional
recursion relation. For temperatures exceeding a given value, the fixed function of the
relation is found and shown to be a devil’s staircase. From this result it is possible to
evaluate the free energy to arbitrary precision. In the field-strength—temperature plane,
a crossover line corresponding to the onset of frustration is found.

PACS numbers: 75.40.Dy, 05.50.+q

Quenched impurities in magnets can cause
randomness in the exchange interactions and
local moments. A uniform magnetic field applied
to a disordered magnet can also induce local
random fields, conjugate to the order parameter.}!
These random fields destroy, according to both
theory? and experiment,® long-range magnetic
order for spatial dimensionalities d less than
some critical d,. There has been considerable
controversy* about whether d, is 2 or 3 for Ising
magnets and more generally about the relative
importance of thermal fluctuations and quenched
randomness. Because there are no exact results
for T+#0, even for d=1, we have studied the
finite temperature properties of the one-dimen-
sional Ising ferromagnet in a binary random
field (+A,). This problem is equivalent to the
mixed ferromagnetic and antiferromagnetic
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FIG. 1. Phase diagram in hy/Jy-T /J plane. The
solid lines are transition lines for P(z). P(z) is a
devil’s staircase in regions I and II. The dashed line
corresponds to onset of frustration. P(z) for points A,
B, and C is shown in Fig. 2.
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chain (a d=1 spin-glass) in a uniform magnetic
field. It has been studied numerically® for gen-
eral T and analytically®” for T-0. Such sys-
tems can be realized experimentally in mixtures
of quasi one-dimensional magnetic materials.?
Our results are best described in terms of the
local magnetization m =(S;), which can be probed
with use of nuclear magnetic resonance or Moss-
bauer spectroscopy. For large ratios of the
random-field amplitude %4, to the exchange coup-
ling J;, or high temperatures (region I of Fig,
1), every spin S; follows its local random field.
Furthermore, m takes on only discrete values
and so its integrated probability distribution
Q(m) is flat nearly everywhere; indeed Q(m) is
an example of a nonanalytic “devil’s staircase”
function (Fig. 2). As h, is reduced, we cross a
transition line into region II where m can take
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FIG. 2. P(z) for J=1.1, from Eq. (11) for (a) 2 =1.4,
and (b) from iterated evaluation (n =1 ton = 40) of Eq.
(9) for h=1and (c) = 0.2. We use g(z)=(z-1/(z
+ 1) rather than z as ordinate. From left to right, the
arrows in (a) correspond to z;, z;(3), zy(3), and zy,
respectively.
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on values in a continuum, which includes zevo. If where f,» is a 2 X2 random matrix,

m=(S,;)=0, then the local random field %; is

precisely cancelled by the effective field due to ~ [exp(J+h;) exp(—J —h;)

the neighboring spins S;_; and S;,;, and so S; is Tiz[exp(_JJr'h ) exp(J—hT)} . (3)
1 1

frustvated. For T —0 the transition line corre-
sponding to the onset of frustration terminates
at i,/J,=2 which is also where the ground-state
entropy first becomes nonzero. As we continue
to decrease i, and T we find an infinite series of
further transition lines related to increasing
smoothness of @(m). Eventually for T <J, and
h,= Texp(-2J,/T), Q(m) becomes indistinguish-
able from a Gaussian distribution,

The starting point is the Hamiltonian

N N
X/T==d 23 SiSin+ 22 h;S;, (1)
i=1 i=1
where J=J,/T and where S;=%1 is the spin at
site ¢, The random field variables %; are un-
correlated and have the same distribution func-
tion p(k;). The partition function Z=3}{53e™ "
can be written as

To evaluate Z we follow Brandt and Gross® and
study the evolution of a two-component vector on
successive application of T;:

- [(v,\_ & A - /1
V" :<v —):Tn.Tn—l'..T]<1>' (4)

n

Equation (4) yields a recursion relation for the
tangent z, of the angle between v, and (}),

Zn =f(h,z,,+1), (5)

where

(6)

flh,z)=e?" <z_i_-’_i:j_>

e =ze

For a pure system, %, =k and z, is uniquely de-

N

Z=(1 1)<I_I T,><;>, (2) fined. As n—w, z, approaches the simple fixed
ier |  point

z2(h) =f(h, z(h)) =—exp(2J +k) sinh/ +e*(1 +e*? sinh %) V2, (7

For a random system, z, will itself be a random
variable whose integrated distribution function is
the quenched average

N e
Pn(z): H J_w dhip(hi)e(z_zn)y (8)
i1
where 6(z) is the Heaviside step function. From
Eq. (5) we obtain the recursion relation

Pon(2) =) dn p) P, (F(k, 2)) .

)

J -J J -d
=1 2n|€ 2 7€ -2n|€ 2 "€
P(z) 2{P<e [e,_ze-J]> +P<e [e"—ze"’

Now we construct® the solution to Eq. (10). Since
the z, are nonnegative, P(z) vanishes for z <0.
Because P(z) is monotonically increasing and
f(#h,z) has a zero at z =e~27, it follows that
P(z) =0 for zse™2?, Repetition of this argument
implies that P(z) =0 as long as z >f(xh, z). Since
f(h,z) >f(—=h, z) for e™2/ <z<e?’, P(z)=0 for z
<z, where z;=f(h,z ;) or z =2(h) [ see Eq. (7)].
Similarly, P(z) =1 if z >z, where z, =z(-h).
Now, the first term in Eq. (10) is 1 for z >z ,(3)
where f(h,z,(1/2))=2,, while the second term
is 0 if z <z, (%) where f(-h,2z,4(1/2))=2z,, so
P(z) =% if z,(3) <z <z4(3) [Fig. 2(a)]. The values
of zy(3) and z,(3) are easily derived from Egs.

)

If the collection of fixed points z =lim, .z, has
a well-defined integrated distribution P(z), then
P(z) must be a fixed point of the functional re-
cursion relation Eq. (9).

For the remainder of this paper, we restrict
our attention to discrete random fields where #;
=+h=hy/T and h;= —h = —h,/T each occur with
probability 3. In this case P(z) satisfies

(10)

[(6) and (7). Repeating this argument, we find

that at the mth iteration P(z)=(2p - 1)/2™ for
2 ([2p =1]/2") <z <zy([2p -1}/27),
where
z([2p-1]/2") =f(h, 2 ([2p = 1]/2"7Y),
zy([2p =1]/2™)=f (R, zy([2p - 1]/277Y)),
for 2p -1< 2™ and
2,([2p=1]/2" ) =f(=h, 2, ([2p - 1] /2771 - 1)),
(11b)
zy([2p =1]/2") =f(=h, 24 ([2p - 1]/27"1 = 1)),
1495
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for 2p —1>2™"1, Equations (11a) and (11b) give
P(z) to arbitrary precision. As m —, P(z) be-
comes a devil’s staircase [Fig. 2(a)]: an infinite
series of rising steps, each of finite width. The
widest step is for P(z) =3. A necessary and suffi-
cient condition for every step to be of finite width
is that z ;(3) <z4(3). This condition is first vio-
lated when f(k, 1) =z or

e??=1+2cosh(2x). (12)

Equation (12) defines a line which divides the h/J-
J7! (or T) plane into a small-J, large-k regime
where P(z) is a devil’s staircase, and a large-J,
small-Z region where we expect P(z) to be smooth
[Fig. 2(b)]. This crossover line separates re-
gions II and III in Fig. 1, it intersects the J axis

|

P@) = ${P(f (1, £ (~h, 20)) +B(f (=R, (1, 2D)} +3 .

Equation (14) implies that where f(-£, f(k,z,))
=z, and f(k, f(~h,2,)) =2, P(z,)=3% and P(z,)=%.
The bistable fixed points z, and z, correspond to
an Ising ferromagnet in a staggered field, or
equivalently, an antiferromagnet in a dc field of
strength /. Letting £4ry denote the correlation
length of these pure systems, we find that near
z, and z,, P(z) has a power-law singularity, as
in Eq. (13), with exponent (21n2)& zp .

Equation (14) becomes invalid when f (4, f (4, 1))
=2zy. For these values of J and &, the behavior
of P(z) near z =1 is similar to that at zyand z2:

P(z)=%+c'sgn(z =1)|z = 1] (102 v | (15)

We can also iterate Eq. (10) a second time,

which yields P(z)=+%,%,...,% at the tristable
fixed points corresponding to the pure Ising ferro-
magnet in a staggered field of period three. In
general, if

F(lafhy ey F B, D), .00
=fNJ,h) =2y, (16)

P(z) will take the form (15) near z =1. Further-
more, for at least some J and % such that f("(dJ,
h) >z, P(z) canbe calculated at the n-stable
fixed points characterizing the pure chain in a
staggered field of period #z. Condition (16) de- |

F(z) = — 11n[2cosh 2J +ze?"+ z % 2" | — 31n[2cosh2J +ze 2" + 2712k ],

(R=0) at J=$1n3, and approaches the asymptote
J=h in the limit T -0 where J, s - =,

Even though we cannot write down the solution
to Eq. (10) when z ;(3) >z,(3), it is still possible
to find P(z) near certain z. In particular, as z

P(z)=1-c(zy—z)'n2EM (13)

where c is a positive constant and £y, the corre-
lation length of the pure Ising ferromagnet in a
uniform field . Equation (13) may be checked by
substitution into Eq. (10). A similar result

holds near z,.

Consider now the functional equation obtained
after application of Eq. (10) to the terms on its
right-hand side. If f(k,f(k,2))>2zy, and f( -,
f(=h,z)) < z this equation reduces to

(14)

| fines a family of curves in the z/J-J7! plane

(solid lines in Fig. 1); these curves terminate

at the J - (or T —0) phase transition points”
where J/h is an integer m. However, we do not
recover the phase transitions found by Derrida
and co-workers” for 2J/h assuming odd integer
values. In the limit #Z -0, our curves meet the J
axis (£=0) when &gy =[1ln(coth J)]"*=m/In2, a
result confirmed by linear-response theory.°
As -0 and J~ =, with 4e?’ finite, P(z) becomes
progressively smoother [compare Figs. 2(b) and
2(c)] and (10) eventually reduces to the differ-
ential equation

[cothd —1](z = 1)P’(2) +2h2P"(2) =0, (17

whose solution is the integral of a Gaussian with
standard deviation (24)Y2(cothJ — 1)V/2,

We have established the angular distribution of
the vectors v, as n —=, We still wish to know
how, for a given z, =tand,, the length |V,| is
distributed. Because |V,|—~%, as n—, it is
useful to introduce the variable

Yp==(2n)*1In(v, " +v,7). (18)

Using recursion relations similar to those for z,
we find that as n - <, the probability distribution
of y, becomes, for a given z, a delta function
centered at F(z) where

(19)

We obtain the quenched average of the free energy from Egs. (2), (4), (18), and (19):

F= fo'°° F(z)[dpP(2)/dz ) dz

w 2mT1

=Fzy) = 20 25 {F(zy([2p-1]/2™) = F(z([2p -1]/2™)}.

m=1 p =1
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Far from the crossover line, the series con-
verges rapidly and it is a good approximation to
keep only the first term. In the limit 70,
where 2 and J are large, the crossover point is
at #/J=1. For h/J>1, keeping only the lowest
term gives

~_ YJ+h) - 1n|e?’ +e2"-27], (22)

If T-0, F=-h for h/J>2 and F=-J~ 4k for 1
<h/J<2. Thus we recover the first of the 7~0
phase transitions.” At low but finite tempera-
tures, the transition is smeared out.

We can also use £(z) to determine the local
magnetization distribution, Namely,

2,2, —exp(=2k;)
2,2, +exp(-2h;) ’

m=(S;)= (23)
where 2z, and z, are independent random varia-
bles, both with integrated probability distribution
P(z). Equation (23) implies that the probability
density dQ/dm for m vanishes at m =(S;)=0
when

e?? < 2coshh. (24)

As h -0, Q(m) is a devil’s staircase if condition
(24) is satisfied,'® and numerical work suggests
that Q(m) remains a devil’s staircase for large
h as well, Once (24) is violated, (S;)is allowed
to be zero and the threshold line defined by (24)
thus corresponds to the onset of frustration. In-
deed, as T -0, this line approaches 2J/h =1,

which is where the ground-state entropy first
becomes nonzero due to frustration,
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