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A time-dependent mean-field theory of the nonlinear electric field response of a charge-
density wave pinned by impurities is implemented. It is found that above a threshold elec-
tric field E,, the charge-density wave moves with velocity vOC(E—ET)3/2. Some general
discussion of the behavior as a function of dimension is included.
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In electric fields £ above a threshold field E ;,
the incommensurate charge-density wave (CDW)
in NbSe,; is observed to move and contribute to the
nonlinear conductivity.!® This threshold is be-
lieved to be due to pinning of the CDW by impuri-
ties.* Several attempts have been made recently
to explain various aspects of the nonlinear re-
sponse of this system. However, the behavior
near threshold, in particular the dependence of
the nonlinear current or CDW velocity v on £
-E,, is not yet understood.*”” Gruner, Zawadow-
ski, and Chaikin® treat the whole of the CDW as a
macroscopic rigid classical object moving in an
effective sinusoidal potential. While this appears
to be a convenient way to analyze aspects of the
data in some regimes, it is far from being de-
rived from a reasonable microscopic or semi-
microscopic model with elastic internal degrees
of freedom. Bardeen® has proposed that macro-
scopic sections of the CDW tunnel quantum me-
chanically as rigid objects, again ignoring the in-
ternal degrees of freedom of the CDW.

Analysis of a microscopic model of the CDW as
a classical, deformable medium interacting with
a weak random potential caused by impurities®
was carried out by Sneddon, Cross, and Fisher.”
The pinning of the CDW is caused by collective ef
fects of the impurities. Agreement’ with experi-
ment was found for fields well above threshold for
both the nonlinear high-field conductivity’ (which
does not agree with predictions of Refs. 5 or 6)
and ac-dc interference effects.? This model, how-
ever, is very difficult to analyze in the interest-
ing regime near threshold because of the exis-
tence of a correlation length ¢ which diverges as
the velocity of the CDW goes to zero. This cor-
relation length measures the size of regions of
the CDW in which there is phase coherence, i.e.,
which move as almost rigid, though deformed,
objects. The behavior near threshold is thus a
critical phenomenon and merits treatment as such.

In this paper a simplified version of the model
of Ref. 7 is studied in mean-field theory and
shown to yield a threshold behavior v < (E - E ;)¥2,
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This threshold behavior occurs in mean-field the-
ory only if the strength of pinning, which is char-
acterized by a parameter D, is greater than a
critical value D, at which metastable states first
appear in zero electric field. For D <D, there is
no threshold and v «E for small £. The mean-
field behavior as a function of D and E is illus-
trated in Fig. 1(a). General discussion of the be-
havior and dimensionality dependence of CDW’s
interacting with impurities is contained at the
end; along with some comments concerning the
experiments.

Let us consider a simple model of a d-dimen-
sional, single-wave-vector, charge-density
wave? interacting with impurities at positions
{f{j}; each tries to pin the local phase ¢; at 3 ;
with the {8 ,} randomly distributed between 0 and
27, The Hamiltonian is

H=%2dRi=R)(@;= ¢, =T, cos(p, -B,), (1)

where the first term with J(ﬁ) short ranged repre-
sents the elasticity of the charge density wave
which favors uniform phase. The %;>0 are ran-
dom impurity strengths independently distributed
with probability P (k) which is taken to be 0 for %
greater than a value D which characterizes the
distribution. By assuming that the elastic interac-
tion in Eq. (1) is of the form % (¢; - ¢;)? [rather
than, e.g., 1—cos(¢; - ¢;)], we have ignored
phase-slip processes due to defects in the CDW.
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FIG. 1. Schematic phase diagram as a function of
the maximum pinning potential D and electric field £
for (a) d >4 and (b) d <4. The phase boundary is the
threshold field E, (D).
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The inclusion of defects (e.g., dislocations) con-
siderably complicates the results and will not be
discussed here. Their neglect is justified if the
CDW is stiff and the impurities far apart.

We will take purely relaxational equations of
motion for the phases: d¢,/dt =—0H/0¢,; +E,
where E simulates an applied electric field in the
direction of the CDW wave vector.

At high electric fields, E >0, the average
phase ¢(t) advances with velocity v: @() =vt,
where v =E —O(D?/E), In this regime, the devia-
tions of the local phase from ¢ are small and can
be treated perturbatively (analogously to Ref. 7).
However, in the interesting regime E ~ E ;. these
deviations become large and occur on all length
scales. Truncation of the model to just one im-
purity (as in Ref. 6 with # somehow describing
the overall effects of all the impurities) enables
it to be solved simply yielding a threshold field
Ep=h withv =0 for E<E, andv ~ (E —=E,)° for
E>E; with { =%. Straightforward arguments
show® that ¢ equals § quite generally for any fi-
nite number N, of {gf)j}. We are, however, inter-
ested in the limit N; - =<,

In this paper we make the simplest approxima-
tion to the general problem by carrying out a
time-dependent mean-field theory. This is equiv-
alent to taking infinite-range interactions, i.e.,
all J(R) =J/N; with N; ~= where the 1/N; is neces-
sary to keep the overall interaction strength fi-
nite. The equation for a single phase involves the
average over all others which for N; -« we re-
place by its smooth time-dependent average ().

Each phase will fluctuate around the average
phase and the pinning is due to the collective ef-
fects of these fluctuations. The mean-field equa-
tion of motion for a phase ¢; is

d(p/dt:—hjsin((#j—ﬁj) +E+¢([)—'(pj; (2)

where for convenience we have set J=1. Self-
consistency requires: that the solutions to the set
of equations for the {¢;} satisty N, 125, @,(t)=¢().
Details will be presented elsewhere and we re -
strict ourselves here to the results and a discus -
sion of the important features of the solution.

The equation of motion for ¢; can be obtained
from a time-dependent potential ®;(¢;,t) by d¢;/
dt=-6%,;/6¢;. Two cases must now be distin-
guished: (i) Weak pinning: D <D, =1 (i.e., all h;
<1). Inthis case, for each phase the potential
®,(¢;) will have only one minimum at all times.
(ii) Strong pinning: D >D,. For #,>1, ®,(¢,) will
have two (or more) minima for at least some ¢.

(i) Weak Pinning.— We first consider static so-

lutions, i.e., d¢,/dt =0 for all j. For this case
self-consistent static solutions only exist if £ =0
and they are unique up to the overall average
phase ¢. For weak pinning there is thus 7o
threshold field. We thus turn to the dynamics
and search for uniformly moving steady-state
solutions with ¢ =v¢{. We assume that all transi-
ents have died away and each phase is moving
such that ¢; —vf is periodic in time with period
T =2r/v. In the absence of a threshold field,
there is a linear response at small £, i.e., v=0,F
for E -0, However, the proportionally constant,
0y, the linear CDW conductivity, is less than the
general high-field value of 1 (see discussion
above) and is given by

0o =L ["PG) (1 -n?)2an] 1. @3)

Note that as long as P(#) is finite as 2~ D, o,

-~ constant as D ~1". Thus, in the weak-pinning
limit the conductivity is nonlinear but has a linear
regime for small fields.

In the limit v - 0, each phase ¢; only deviates
by an amount of order v from the (time-depen-
dent) minimum of its effective potential ®;,. Equa-
tion (4) is derived from an expansion of ¢, about
its value at this minimum. We now turn to the
more interesting strong-pinning case.

(ii) Strong pinning. —We again first consider
static solutions. Because of the existence of sev-
eral minima of ®;(¢;) for those jwith #;>1, many
self-consistent, linearly stable, static configura-
tions are possible for E less than a threshold
field £,>0. However, as E —~E; it can be shown
that these solutions become more similar until at
E =E ; there is a unique (up to an overall phase)
self-consistent solution and for E > E ; no static
solutions exist. For D —1", the threshold field is
given by E . =/,%(9/47)(h = 1)?P(h)dh, and hence
tendstoO0asD—~1".

We note that below threshold hysteretic behav-
jor exists. If the electric field is increased and
decreased adiabatically, the resulting configura-
tion will not be the same as the initial state. The
linear response to an ac field below threshold
and other properties in this regime will be dis-
cussed in a longer paper.

A steady-state mowving solution exists in the
strong-pinning limit only for £>FE; and, like the
static solution at E =E ., is unique (up to a trivial
overall phase). In contrast to the weak-pinning
case, the motion of each phase for strong pinning
is rather complicated at low velocities. This is
due to the emergence, time evolution, and disap-
pearance of minima of some of the time-depen-
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dent potentials ®,(/). For those ¢; with #;>1 the
motion is as follows: For most of each period,

¢, lags behind the smallest ¢; minimum of ®; by
a small amount [0()] and moves with a velocity

of order v. However once each period, T, this
minimum disappears and in a short transit time
which turns out to be order v™*%, ¢, moves rapid-
ly to catch up with the next minimum. A careful
asymptotic analysis of this behavior and the mean-
field self-consistency condition yields the veloci-
ty near threshold,

v=B(E -E;)¥2+0((E -E)?In(E -E)), (4)

i.e., £ =%, the main result of this paper. For D
- 1%, the boundary between weak and strong pin-
ning, the coefficient B has the form

B =[bf1D(h _ 1)1/3P(h)dh]_3/2, (5)

where b =3y 27 ¥3/1 with y , the smallest zero of
the Airy function Ai(-y). Therefore, B-~= as
D~ 1", with the divergence dependent on the form
of P(k). Inthis limit, the range of applicability
of Eq. (4) will approach zero—characteristic of
the behavior near a multicritical point, Note that
for high fields E>D, v =E - (2E) *[,°%4*P (h)dh for
both strong and weak pinning.

In Fig. 1(a), a mean-field “phase” diagram is
shown as a function of D and E; note the multi-
critical point at £ =0, D, =1,

By analogy with critical phenomena, one ex-
pects mean-field theory to be valid near the
threshold field E ;, for spatial dimensions d great-
er than an upper critical dimensiond.. It is not
at all clear at this stage, however, what d, is.
For d<d., ¢ will change but there will be a thresh-
old field in any dimension for sufficiently large
impurity pinning strengths and ¢ will always be
defined, in contrast to usual critical phenomena.
Note that even ind =0, which corresponds to a
finite number of 1¢;f, E,->0 and ¢ =% as noted
above.

I now speculate on the form of the phase dia-
gram as a function of D and E, for various d.!°
For d >4 there will exist a weak-pinning regime
at small D with no metastable states, no thresh-
old, and linear response (as above and in Fig.
1(a)]. This will be separated by a multicritical
point D, from the strong-pinning regime with
metastable states and a threshold. Ind >4 there
will also be some D.>D such that the ground
state at £ =0 will have long-range order only for
D<D. ' However, we are concerned here with
metastable states which will generally zof have
long-range order except for D <D, where there
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is a unique state. For E>E (D), in all dimen-
sions, I believe that there will be a unique state
which will have time-dependent long-range order,
with a well-defined average phase @() =vf. For

v >0, the long-wavelength components of the ran-
dom %; which destroy the order for E <E, will be
cut off by time averaging.” This can be shown
explicitly for £ > E , for arbitrary pinning strength
in any dimension.

A schematic phase diagram for 4 <4 is shown in
Fig. 1(b). Inthis case, the long-wavelength com-
ponents of the randomness destroy the order at
E =0 for all D, and there will always be a thresh-
old field. The regime with no threshold will
hence not exist, i.e., Dy =D.=0. A CDW with
random impurities in 4 <4 will hence show true
long-range order (i.e., 6-function Bragg peaks in
the structure factor) only for E >E, when v >0,
The intensity of these peaks should scale as (E
- E;)?® where the exponent 8 will presumably de-
pend ond.

The dependence of the threshold field on D for
small D will be given*'2 by E; ~D¥* %, This can
be most easily derived by assuming that the re-
normalization-group fixed point which controls
the threshold behavior occurs at D* and E* both
of order 1, and by noting that for E,D <1, the
renormalized parameters at a length scale L are
E(L)~ L?E and D(L) ~ L'“?9/2D | The Lee-Rice pin-
ning length* L* (for a system with weak pinning)
is in fact the length scale at which the effective
pinning strength becomes of order of the CDW
stiffness and hence “strong,” i.e., D(L*¥) ~D*~ 1,
The critical behavior near threshold will thus be
the same in d <4 for both strong and weak pinning
provided defects in the CDW can be ignored.

Finally, I make several comments concerning
the experiments on NbSe,;.!™ Firstly, it appears
that the impurities distort the CDW sufficiently
little so that even if there is no true long-range
order for £ =0, the CDW correlation length is
larger than 1 um and hence there are apparent
Bragg peaks.'® It is thus reasonable to assume
that the impurities do not cause destruction of the
local CDW order suggesting that defects do not
play an important role. Secondly, the current-
voltage data near threshold!™® can probably be
relatively well fitted by a ¢ between 1 and 2 with
some rounding due to macroscopic inhomogenei-
ties near E;. Thus the mean-field value { =%
appears to fit the experiments considerably better
than previous calculations.

I have assumed throughout this paper that for
E>E . the average phase moves uniformly. It can



VoLUME 50, NUMBER 19

PHYSICAL REVIEW LETTERS

9 May 1983

be shown that the uniformly moving mean-field
solution is sZable to small fluctuations. However,
for any finite N;, there will be large oscillations
in d@/dt near E r, with frequency 27/T. The ex-
periments on small samples of NbSe, show large
current oscillations (narrow-band noise) which
are the same magnitude as the dc current very
near threshold. Several explanations for these
oscillations have been advanced,’”**'!5 but only
the idea of a macroscopic dynamical instability
of the uniformly moving state'® has really ad-
dressed the question of the existence of the oscil-
lations in the limit of a large system. In light of
the large natural length scales discussed above,
it may well be possible to explain the oscillations
as a finite-size effect with a diverging amplitude
as E - E;" caused by the divergent correlation
length, £ ~ (£ —=E;) Y, in the moving state. Since
the correlation length measures the size of re-
gions which move coherently, the current oscilla-
tions will become of relative order 1 when £
reaches the size of the sample.

We note that a phenomenon closely related to
CDW pinning is the critical-current behavior of
flux lattices in type-II superconductors weakly
pinned by impurities. In these systems, large
uniform velocity fluctuations of the flux lattices
are not observed,'® although the concomitant inter-
ference effects of an ac plus a dc force on the dc
velocity are observed in both NbSe, (Refs. 7 and
8) and flux-lattice motion.'® This difference may
be due to the relatively larger samples. A de-
tailed study of the flux-flow behavior of weakly
pinned flux lattices near to the critical current
would be very interesting.
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