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Damping of Large-Amplitude Plasma Waves Propagating Perpendicular to the Magnetic Field
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Computer simulations of magnetosonic waves, velocity-shell instabilities, and upper-
hybrid heating show evidence of a general damping mechanism for large-amplitude elec-
trostatic waves propagating perpendicular to a magnetic field: Particles trapped by a
wave of frequency z and phase velocity p h see an electric field V h&B, which acceler-
ates them parallel to the wave front until the gp &&B force is large enough for detrapping.
For ~ &&r „velocities as large as (a/4a )V h can be attained, within a time ~ t = ~/4~, .
PACS numbers: 52.35.Mw, 52.35.Fp, 52.65.+z

Plasma waves propagating perpendicul. ar to a
magnetic field are not as easily damped or ab-
sorbed as their parallel propagating counter-
parts. In a thermal plasma, simulations (Kam-
imura, Wagner, and Dawson') have confirmed
that in the limit as the magnetic field approaches
zero, the Bernstein modes, which themselves
are undamped, collectively act as a single quasi-
mode which damps according to the usual Landau
damping rate for electrostatic waves in the ab-
sence of an appl. ied magnetic field. This Landau-
l.ike damping arises from the phase mixing of an
infinite set of closely spaced frequencies, which
are nearl. y all. harmonics of the cyclotron fre-
quency.

For nonzero cyclotron frequency much smaller
than the wave frequency, waves can be stochas-
tically damped if their phase velocity is compar-
able to, or l.ess than, the particle thermal ve-
locity (Sagdeev and Shapiro, ' and Karney'). Then
a significant number of particles can move in
nearl. y constant phase with the wave at some
points in their Larmor orbits. In effect, the
particles receive random impulses at these reso-
nant points, with corresponding changes in the
wave energy.

The minimum wave ampl. itude necessary for
stochastic damping increases as the phase veloc-
ity increases beyond the thermal velocity, and

approaches the cold-trapping threshold in the
limit. For such large amplitudes, the electric
force of the wave initially greatly exceeds the
v&&B force, whereas Karney assumed the wave
to be a small perturbation on the Larmor motion.
Particl. es can now be temporarily trapped and
accelerated parallel. to the wave front (Forslund,
Morse, and Nielson; Sagdeev and Shapiro'; and
Sugihara and Midzuno'). They become detrapped
as the v &&8 force overcomes the electrostatic
force of the wave. This can result either from

an increase in v, or from a decrease in the elec-
tric field, e.g. , via damping of the wave, or via
motion of the particles to a region of lower wave
amplitude. By this mechanism the wave can
rapidly lose most of its eneI'gy in producing a
few fast particl. es.

We examine this mechanism in some detail. be-
fore discussing relevant simul. ation results. Un-
der the combined influence of an electrostatic
wave, -E sin(ky —&dt), propagating in the posi-
tive y direction with phase velocity Vzt, = cu/k,

and a ~-direction magnetic field with cyclotron
frequency ~, , the particle equations of motion
in the wave frame are

x= co, (V z+y),

y = —~, x —(qE/m) sinky.

Integration of Eq. (I) yiel. ds

x = xo + (0~(Vrh t + y —yo) q

(2)

where the subscripts 0 denote initial values. In-
sertion of Eq. (I) into the derivative of Eq. (2)
gives

~ 8 ~ 2 2= —(d g —CO,

where

(us'(y) = (u, '+ (qEk/m) cosky.

(4)

Equation (4) describes sinusoidal. oscillations of

j about an average velocity

(6)

with frequency w~, provided the oscillation am-
plitude is small. Equation (6) shows that the os-
cill.ating particle fal. ls behind the wave, at a rate
increasing to V&h (i.e. , zero velocity in the lab-
oratory frame) as cosky-0, at which time de-
trapping occurs. For this smal. l-oscillation
case, we may use the approximation j = 0 in
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Eq. (2) to obtainx= —(qE/m~i, ) sinky, which ap-
proaches an escape vat. ue

V„,= (qE/m ~, ) sgn(q )
-=V~ sgn(q )

as detrapping occurs. Note that this value is the
E &&8 drift velocity, and (except for sign) is in-
dependent of particle charge, mass, and initial
conditions, although, by Eq. (3), these parame-
ters do affect the time of detrapping. This re-
sult differs from that of Ref. 5, where a small-
oscil. lation final. velocity, x = ~V~ +x„ is obtained.

For large oscillations, the precise x attained
at detrapping is a function of the initial condi-
tions. However, Eq. (2) shows that if i sgn(q)
& VE, the y acceleration is everywhere negative,
and trapping is not possible. If i sgn(q) ( V~,
there is a region of positive acceleration, but
this may not be sufficient to reflect a l.arge-os-
cillation particle. Thus, Eq. (7) should be con-
sidered as an upper I.imit on lxl in the general
case. Conceivably, depending upon the phase
of the oscil. lation when this limit is reached, I xl
might exceed V~ by as much as 2wVph [cf. Eqs.
(3) and (5)j if the particle must complete the os-
cillation before falling behind the wave. But this
cou1d happen only for sma1, 1. osci1.1.ations, for
which j=V„=—

Vph and hence x=0, so that x is
insensitive to the exact time of escape as x ap-
proaches V„,.

We are interested in this mechanism for ~»co,
an'd Vph 1 arge relative to the thermal ve1 ocity.
Then the cold trapping condition, 2(qE/mk)'~'

Vph must be satisf ied, and gives the thre sho ld
cond lt ion 9

V~ o (~/4(u, ) V „,
where we hereafter ignore the sign of the charge.
After detrapping, a particl. e will sti1, 1. interact
stochastically with the wave if its velocity is be-
Iow the Karney maximum stochastic velocity,

V = (32m/v&u ) 'V V

Note that V»& VE unl. ess V~ greatly exceeds the
threshold value of Eq. (8), which in general will
not occur because the wave becomes heavily
damped when the threshold given by Eq. (8) is
reached. However, the mechanism described
here is not really stochastic since the particle
is BcceI.crated to V~ in one short impuI. se. Since
V~ = VM» this suggests that in many cases this
systematic acce1.eration may dominate over sto-
chastic heating.

PI.asma instabilities which grow from a low
noise level will not be affected by this mecha—
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nism until roughly the trapping threshold ampli-
tude of Eq. (8) is attained. Rapid energy absorp-
tion by trapped particles is then expected to satu-
rate the growing wave at this level. This satura-
tion should be accompanied by the production of
fast particles, up to a limit of (e/4+, )V&z, which
can greatl. y exceed the phase velocity of the wave
itself. Since this value of x generally dominates
the i, and y -yo terms of Eq. (3), the wave satura-
tion 2nd particI. e production shou1. d occur within
a time
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FIG. 1. Velocity-space orbit of a particle of positive
charge moving in a strong electrostatic wave propagat-
ing in the positive y direction, with a uniform magnetic
field directed out of the page. The particle is initially
trapped, and oscillates in py while accelerating in the
g direction. Upon escape, it is left on a modulated
Larmor orbit with velocity much larger than the phase
velocity, P'

h =0.764, and slightly smaller than the F,
'

x& drift velocity pz ——10.

t, Q)/4(d ~

This mechanism is illustrated in Fig. 19 which
shows a representative particle orbit in labora-
tory-frame velocity space. The equations of mo-
tion were integrated for many particl. es initially
at rest in the laboratory frame, but with differ-
ent initial positions. A given electric field wave
was used, with parameters 7~=109 Vph =0.7649
and ~= 3~„ thus VE exceeds the 0.57 thresho1. d
value of Eq. (8). The predicted initial frequency
of oscillation in the y direction is ~~(0) =6.35~„
which gives an initial. average velocity in the
laboratory frame of V„(0)+V~h = 0.745, indistin-
guishab1, e from V» itself. These osciI, lations are
prominent in the figure, and this signature could
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serve to identify the mechanism in more realis-
tic simulations. The observed decrease in am-
plitude with decreasing frequency (i.e. , increas-
ing intervals in x) is a, consequence of adiabatic
invariance, ' whereby the mean square value of

j over a fuI. L cycle is inversel. y proportional to
the period. Adiabatic invariance breaks down
as detrapping is approached, where the equal. ity
of frequencies, ~~ = ~, [cf. Eq. (5)] causes de-
generacy of the two-dimensiona1. system, and the
explicit time dependence of the reduced one-di-
mensional system is no longer slow relative to
the bounce frequency ~~. The measured i = 9
at detrapping is l.ess than the limiting vat.ue, V~
= 10, because the large oscillations permit early
detrapping, at time ~, t =12. The particle gains
much energy while trapped and is left on a 1.arge
Larmor orbit, within only two cyclotron periods.
This Larmor orbit is slightly perturbed by the
wave, which, since VMS=13.3, is expected to
produce further stochastic energy changes, either
gains or losses, over much longer times.

These same parameters were used for a nu-
merical. study of the discrepancy between Eq. (7)
and the resu1t of Ref. 5. For a wide range of
initial positions and velocities, including x, as
l.arge as 9, the maximum attainable x was found
to be we1.1. approximated by V~+ Vp&. Repetition
with V&h 4 gave the same result. In both cases,
the value V~ could be exceeded only with particles
initial. ly almost at rest in the wave frame, and
this value was then exceeded by an amount small
relative to the previousl. y conj ectured 2&Vph. The
z limit was found to be essentially independent
of ~,. Thus, the results are in definite disagree-
ment with the limit expression, mV~+x„of Ref.
5, in regard to both the value of the VE coefficient
and the presence of the ~, term.

The clearest evidence for this mechanism in
self-consistent simulations has been seen in a
study of ion acceleration by large-amplitude
magnetosonic waves. ' Figure 2 presents the ion
velocity-space distributions at times ~„.t = 3, 6,
9, and 12. The trapped ions first appear in Fig.
2(b), where they form an arc concave to the left
in the upper right-hand portion of the plot. After
detrapping, the ions are l.eft in a large Larmor
orbit, clearly separated from the bulk of the ion
distribution in Figs. 2(c) and 2(d). The magneto-
sonie wave is traveling to the right, and reaches
peak amplitude at the time of Fig. 2(b). The cor-
responding peak value of V~ = 1.5 slightly exceeds
the cold-trapping threshold value, (~/4~„)V~&
=1.2, from Eq. (8). The wave amplitude decreas-
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es to V~=1.0 after the peak as the heating of the
bul. k ions 1.owers the trapping threshold. Ion
phase-space plots of V„vs x [cf. Fig. 1(c) of Ref.
7] show the characteristic trapped-particle struc-
ture at the time of the wave peak and beyond.
The large Larmor orbit of Fig. 2 shows an es-
cape velocity, V„,=3.0, which exceeds V~ but
grees well with the expression, V~+ Vp„-—2.9,
reported above for the maximum escape velocity
attained in the singl. e-particle study. Equations
(3) and (5) predict that the trapped-ion velocity
paral. lel to the wave front shoul. d reach the values
Vz

——1.5 and V„,=3.0 in times ~~(0) t= 2.4 and

4.7, respectivel. y. Thus, no more than one bounce
should occur before detrapping, as seen in Fig. 2.

A second category of simulations that shows
evidence of wave damping via this trapping mech-
anism is a study of spherical, veLocity-shel. l in-
stabil. ities using a 22-dimension electrostatic
particle code with a fixed magnetic field perpen-
dicular to the electric grid pl. ane. For cases
with the strongest instabil. ity, the el.ectrostatic
field reaches 25% to 110% of the cold-trapping
threshold given by Eq. (8), and is then damped
within a time c, t = 3-5, or several. times the
single-particle estimate of Eq. (10) with ~ = 3~, .

XL

FIG. 2. (a) -(d) 1on momentum-space distributions at
times (,.t =3, 6, 9, and 12, respectively, in the pres-
ence of a magnetosonic wave propagating in the x di-
rection. The normalized-momentum scales are es-
sentially velocity scales, since g =10 in the same units.
Note the differing numerical scales on the four plots.
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This damping is accompanied by the production
of a few fast particles (approximately 0.2% out
of the 384000 cold Maxwellian background parti-
cles) with velocities up to twice the phase veloc-
ity and cl.early separated (by 10 or more times
the thermal speed) from the main Maxwellian.
The energy of these fast particl. es is comparable

FIG. 3. Growth and decay of the forward-scattered
electrostatic upper-hybrid wave (mode 14) associated
with Raman backscattering. The wave peak coincides
with a sudden increase in the number of fast electrons,
here defined as having a perpendicular velocity compo-
nent exceeding the phase velocity of the upper-hybrid
wave, which in turn remains 3 to 4 times the bulk elec-
tron thermal velocity throughout the simulation. At the
peak of the electrostatic wave amplitude about 6% of
the electrons have been accelerated to high energy.

to that lost by the waves during damping.
Evidence of this damping mechanism al.so ap-

pears in simulations of the Raman backscattering
of extraordinary waves in a collisionless uniform
magnetized plasma using a 1& -dimension el.ectro-
magnetic particle code with k perpendicul. ar to
8,. The pump wave causes sufficient heating to
lower the trapping threshold below the value giv-
en by Eq. (8), and the peak amplitude of the for-
ward-scattered el.ectrostatic upper-hybrid wave
agrees with this lower warm-trapping threshol. d. '
The damping of this wave is simultaneous with
the generation of a small number of fast electrons
with velocities up to 7 times the thermal velocity,
as shown in Fig. 3.
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