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of (g)' insures the general covariance of Ve ff.' H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51,
793 (1948).

l4This is the "Planck lergth" seen by a five-dimension-
al observer. The usual Planck length is Q4 =G,l
2mB 5', 3. However, since we have chosen coordinates
scaled by cp,

' [Eq. (8)], the parameter that multiplies
the Lagrangian I.Eq. (4)] ls p, Q4= G4.

"E.Witten [Nucl. Phys. B195, 481 (1982] has argued
that the five-dimensional Kaluza-Klein vacuum is semi-
classically unstable. This result, however, depends on
the specific model. By contrast, we expect that our
analysis can be straightforwardly generalized to any
Kaluza-Klein model of interest.

' T. H. Boyer, Phys. Rev. 174, 1764 (1968); W. Lu-
kosz, Z. Phys. 262, 327 (1973).
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It is claimed that the abstract analytic continuation of hypercubic lattices to noninteger
dimensionalities can be implemented explicitly by certain fractal lattices of low lacunar-
ity. These lattices are special examples of Sierpinski carpets. Their being of low la-
cunarity means that they are arbitrarily close to being translationally invariant. The
claim is substantiated for the Ising model in D 1+ e dimensions, and for resistor lmt;—

work models with 1&D& 2.
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Sets whose dimensionality d is not an integer
enter statistical physics from two separate direc-
tions: continuous ~ expansions near an integer d
in the theory of critical phenomena, ' ' and frac-
tals. ' ' The & expansions involve formal analytic
continuations of momentum integrals, e.g. , fd'q
—fq' 'dq, or of recursion relations constructed
for d-dimensional hyper cubic lattices. " Such
spaces have never been implemented, neverthe-
less it is postulated that they are tzanslationally
invariant. The general belief in universality is
that for given symmetry of the order parameter
and range of interaction, a system's critical
properties depend solely on the dimensionality

In particular, all Ising models with short-
range interactions and given 4 - 1 are believed to
exhibit identical critical properties, with the
critical temperature I', decreasing to zero at the
lower critical dimensionality 4, = 1.

Fractals, to the contrary, are fully specified
geometric shapes. ' The goal of the present pa-

per is to show that, from the viewpoint of certain
important problems, the formal fractional dimen-
sional spaces with 1&D & 2 can be implemented by
suitable fractals. These fractals may also be
useful in performing explicitly some other calcu-
lations for such problems.

One very important critical exponent is v = 1/y,
which characterizes the divergence of the corre-
lation length $ near the critical temperature,
through $ -(T —T, ) ". Both the real-space
Migdal hypercubic recursion relations" and the
(d —1)-dimensional interface energy modeP pre-
dict that in 4 =1+ & dimensions the Ising model
satisfies y =e +0(e'). This result is generally be-
lieved to be exact for small &, but until now it
could not be checked on any explicit {1+a)-dimen-
sional geometrical shape. In this paper we pro-
pose to show that it is satisfied in the limit on a
suitably constructed fractal lattice." We also
show that at T « ~, the temperature on this frac-
tal lattice scales with the exponent &, as also
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found for the abstract hypercubic lattices. It has
recently been shown' that the critical phenomena
on a fractal lattice depend not only on its (nonin-
teger) fractal dimensionality D, but also on other
geometric and topological parameters. The pa-
rameter that will be needed here is lacunmity
[Ref. 5(a), Chaps. 34 and 35], which measures
the deviation of a fractal from being translation-
ally invariant. " One measure of lacunarity is ob-
tained by considering the mass of a fractal con-
tained in a sphere (or cube) of radius (side) p.
This mass can be written @s+p, where the ex-
pression p simply interpolates the correspond-
ing expression for lines, planes, etc. , but the
prefactor + is very different: It is not a numeri-
cal factor but a random variable. One basic
measure of lacunarity is the mean-square devia-
tion of + divided by its square mean.

The present paper proposes to show that at the
limit of low lacunarity, the physical properties of
these fractals (which are concrete and geometri-
cally implementable geometric shapes) become
identical to those of the abstract analytically con
tinued hypercubic lattices

Two examples are investigated. (a) We recover
y =&+0(&') for the Ising problem on (1+&)-dimen-
sional fractals. (b) We find that the resistance of
a D-dimensional resistor network (1&D & 2) scales
as I-' with the linear size L. Thus, our low-
lacunarity fractal lattices yield explicit geometric
implementations of the systems with noninteger
dimensionality that are postulated, e.g. , in Refs.
1-3. We do not claim that these implementations
are unique, nevertheless we think that our demon-
stration of their existence is of help in assessing
the relevance of the abstract analytical calcula-
tions.

The fractals we consider are special Sierpinski
carpets [Ref. 5a, Chap. 14]. Given two integers
~ and c, each square subdivides into &' intermedi-
ate squares, each of which subdivides further in-
to c' small squares. Each stage of the fractal's
construction cuts out tremas, " each of which is
made of &' small squares in the center of each
intermediate square. Thus, b'(c —l2) sinall
squares are left in, and the fractal dimensionality
is given by' '

D =ln[b'(c' —12)]/In(bc).

The case & =2, c =3, 1=1 is shown in Fig. 1. It
can be shown that when b tends to infinity,
lacunarity tends to zero. In order to achieve D
= 1+ &, we let c- ~, we keep c —~ =q a finite eon-
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FIG. 1. The fractal Sierpinski lattice described in
the text, with 5 =2, e =3, E =1, is shown here after the
second construction stage. The points denote the lattice
sites. Whenever a bond between nearest-neighbor sites
lies on the boundary of a (black) cut out trema, it is
characterized by.K~; otherwise, it is characterized by
K.

stant, and we make sure that lnb «inc. Thus

D = 1+ ln(2qb)/In(bc), c- ~. (2a)

To achieve D =2 —~, let c- ~, and keep & a finite
constant. Thus,

D = 2 —l2/c21n(bc), c —~. (2b)

Finally, any prescribed value of D with 1&D & 2

can be achieved by picking any exponent ~, with 0
& 0 &D, and setting

l =c —c, b=c '', c- (2c)

The above procedure is iterated until nearest-
neighbor lattice sites are located a distance a
from each other. No lattice sites are placed in
the interio~ of the cut out tremas. Every two
nearest-neighbor sites are connected by a bond.
We create a physical model, as in Ref. 6, by plac-
ing on each lattice site a spin-~ Ising moment
with nearest-neighbor interactions. This model
is investigated in the case (2a) with b, c- ~.

It is necessary to distinguish two sorts of near-
est-neighbor bonds (in units of AT): those on the
boundary of a cutout, E„, and internal bonds, K.
Our renormalization-group scheme moves all the
bonds within a dedecorated square to its perime-
ter, and then decimates. Although this proce-
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dur is not exact in general, we argue that the
results are probably exact to order &, because
the exponents is independent of & and &; that is,
the recursion relations are the same after a sin-
gle rescaling transformation of factor (bc)", and

after n rescaling transformations of factor &~.
The analytic continuation of the hypercubic lat-
tices to d = 1+ & is also trusted because the result
y =e + 0(&') is independent of the rescaling factor.

The new coupling constants K' and K ' are now

found to be'

tanhK' = tanh" [b (c —i —1)K+ 2bK ] tanh"' ') [bcK],

tanhK ' = tanh" [Tb (c - f —1)K+ (b + 1)K —~K] tanh'~ ' ') [~ (bc - 1)K +K ]. (3)

From now on, we limit ourselves to the case &,c
» 1, c —l =q =const. A schematic flow diagram
using the coordinates tanhK and tanhK is shown
j.n Fj.g. 2. We find fj.ve fixed points
~o of them, namely C(K =O, K =0) and E(~, ~),
are trivial stable fixed points, corresponding to
the infinite and zero-temperature phases, respec-
tively.

Linear izing the recur sion relations near point
& with the variables K and K, we. find that
b (c —i) is an eigenvalue corresponding to the
eigenvector K/K =2. This eigenvalue can be re-
written as (bc)', with y =e +0(e'), as is found by
many low-temperature recursion relations on ab-
stract translationally invariant systems. '"" This
value of the exponent near the zero-temperature
fixed point describes the scaling of the surface
tension. The value y =D —1 is probably related
to the fact that the perimeter of a (randomly
chosen) domain of excited spins scales as I-
with the linear size ~.

The point D(0, ~) describes the case with infi-

BK 2 "4g= b (q —1)[1—ze ' R ] —= 2b;ez ~ ' 8K

! nitely strong interactions on the boundaries of
the holes. ' lt is stable in the tanhK direction
and unstable in the tanhK direction. When &, c»1,
the coordinates of the point A are (1/(bc)""~"",
~). This point is unstable, with the eigenvalues
qb = (bc)'" '" """ and qb = exp[- —, (bc) "" ' ]
corresponding to eigenvectors in the tanhK and
tanhK directions, respectively. Notice that for
lattices near one dimension [D =1+~, cf. Eq.
(2a)] the first eigenvalue (the larger one) can be
written as (bc)', so the related critical exponent
isy& =&, independent of &&.

The analysis of the fixed point & involves addi-
tional algebra. Using Eqs. (3), and taking b, c
» 1, ln&» &, we first find the location of & in the
parameter space:

K~ =lnfb (c —q)/2[b(q —1')- 1]j+0(K R,s 4~&/i))

=exp(-2[b(c —q)1" &[1+0(e '» )]. -

The terms of the 2~2 mate ix of the partial deriv-
atives are given, to the leading order, by

(4)
BK ' BE„'
BK

= 2[b(q —1) —1][b(c—q)]' exp[-2[b(c —q)]~ j " = 4(b +1)[o(c—q)]~' exp[- 2[b(c-q)]~~ ].BE

The eigenvalues are X, = b(q —1)[1——', e R] and

x, =16(q —1) '[b(c-q)]"'exp{- 2[b(c-q)]"'). As

t."-~, X2-0, so that it represents an irrelevant
field. Defining y via x, = (bc)', the limit c- ~
yields y = ln[b(q —1)]/ln(bc). For b» 1, this sim-
plifies further to y = lnb/ln(bc). On the other
hand, Eq. (2a) yields e =D —1=1nb/ln(bc). Thus
we have recovered the result of Midgal' and Ka-
danoff' and Wallace and Zia': y =a+0(e'). We

emphasize again that, this result being indepen-
dent of b and of c, we believe it to be exact.

Next, using fractal lattices of the same family
for any D satisfying 1&D &2 [see Eqs. (2)] we

study the problem of electric conduction on our
lattices. In this case each bond on the boundary

" ~ID

C

tanh K= I

FIG. 2. A schematic flow dii.agram in the parameter
space (tanhK, tanhK } for/ =2 and g, g~ l.
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of the eliminated areas is taken to be a resistor with resistance R„; similarly, what used to be a K
bond is now taken to be a resistor R. The resistor-moving renormalization-group scheme yields the

following equations:

bl b(c —1) bI, b (c —l)
b (c —l —1)/R +2b/R bc/R ' b (c- l —1)/2R + (b + 1)/R 1/—2R (bc —1)/2R+1/R (5)

Equations (5) may be written as a single recur-
sion relation in the variable & =R /R. When b,
c- ~, one has & - 2. Substituting in Eqs. (5), we
find that

R' =Il/(c —l) + (c —l)/c]R =(bc)~R,

where & =2-D. This result applies to all the cas-
es considered in Eqs. (2). Again, this agrees
with the result one expects for the abstract ana-
lytically continued, translationally invariant lat-
tices.

Our several examples suggest that, within the
Migdal approximation, our low-lacunarity frac-
tals and the abstract hypercubic" lattices have
the same physical properties, for general nonin-

teger D. It is clear, however, that the general
statement near the beginning of this article re-
quires further tests: One should compare gener-
al-D low- and high-temperature expansions,
other renormalization-group schemes, exact cal-
culations, etc. We hope that this paper will stim-
ulate such further studies.
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and Humanities Basic Research Foundation.
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A renormalizable relativistic quantum field theory of nuclear interactions is shown to
possess not only Yukawa-type solutions, but also a topologically nontrivial one. It cor-
responds to a hadronic monopole, called a hadroid. Experimental evidence suggesting
the existence of such a nuclear state is considered.
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The possibility that hadronic forces can be long
ranged in the ground state was considered by Lee
and Yang a number of years ago. ' Their argu-
ment was based on the assumption that hadronic
interactions are invariant under local non-Abel. ian

gauge transformations. At that time it was be-
lieved that such invariance necessitated the exis-
tence of massless vector bosons, leading to a
formal equivalence of the non-Abel. ian theory with
electromagnetic gauge transformation. We now
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