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The phenomenological Dirac optical potential
has been used extensively to fit proton-nucleus
elastic scattering data. ' The potentials so de-
termined at low energy have recently been shown
to be consistent with interactions used in relativis-
tic models of infinite nuclear matter. ' 4 Shakin
and collaborators' have shown that a Brueckner
Hartree-Fock approach to infinite nuclear mat-
ter, starting from an NN potential based on NN
phase shifts, yields a Dirac optical potential in
agreement with the phenomenology at low energy.
Other nuclear-matter approaches" based more
generally on the idea of dominant scalar (attrac-
tive) and vector (repulsive) meson-exchange
forces yield similar potential strengths. How-
ever, for energies greater than 300 MeV, the
situation stands in contrast to standard multiple-
scattering approaches to the optical potential"
employing the Schrodinger equation which provide

electron scattering data and Hartree-Fock mean-
field theory. '

Multiple-scattering theory also provides a very
clear basis for the physical origin of the imagin-
ary (or absorptive) part of the P-nucleus optical
potential. ' ' In the impulse approximation the p-
nucleus reaction cross section is due to quasifree
NN scatterings and this is, in fact, known to be
in accord with experiment at intermediate to high
energy.

In the present paper, we employ the simplest
notions of multiple-scattering theory to deduce
the impulse-approximation Dirac optical potential.
The key ingredients are the invariant NN ampli-
tude in the space of Dirac spinors" and the nu-
clear density.

The elastic scattering of a proton by a spin-
saturated nucleus is described by the fixed-ener-
gy Dirac wave equation

a direct and simple form for the optical potential
(1)based on the impulse approximation. The ingredi-

ents are free NN amplitudes and the nuclear den- where p'=E is constant and U»(E) is the elastic-
sity which are far from arbitrary, the former scattering optical potential. The asymptotic mo-
being determined by NN scattering experiments mentum k is related to the energy by E=(p'
and the latter being rather tightly constrained by + m')' ' (we employ units where Pi = c=1). The

solution ca,n be written as an integral equation:

tj'rk, "'(r) = e'" ' ' u, (k)+ fd'r' (r~(P'+ m)/(P' —m'+ zq) ~r') (r'(U»~gk, "'). (2)

Considering the asymptotic limit as r- ~, one finds

gq, '(r) = e'"''u, (k)+(e'""/r)( I(EP —ky r-+m)/4w] fd'r'e '" ''
(r'~Uoo~gp, ")),

CP

where the term in curly brackets defines the scattering amplitude, and k'=kr" is the outgoing wave mo-
mentum. Employing the identity"

Eyo —y k'+ m= 2m~~. u (k')u ~(k'),
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we can extract the scattering amplitude from Eq. (3}in the form

F...(k', k; E) = —(m/2w)u, .(k') fd'r'e '" ' ' (r'~U«~g-„, ").
Introducing a Dirac T matrix appropriate to elastic p-nucleus scattering by the definition

U„iyg, &'&&= T„ik&u, (k),

where ~k)u, (k) is the incoming plane-wave state, we have that the Dirac scattering amplitude involves
plane-wave matrix elements of Too as follows:

E,~, (k', k; E}= —(m/2v)u, ~ (k') (k'~ Too ~k) u, (k). (7

(6)

The central point exploited here is that in any multiple-scattering theory, the T matrix is, in single-
scattering approximation, the expectation value of a sum of two-body NN t matrices in the nuclear
ground state ~0):

A

(k'IT. '"
I~& = &0I[Z &k'Ii; Ik& l I0&. (8)

In this equation, t,- is the positive-energy Dirac spinor t matrix for the incident proton to scatter
from nucleon i of the target nucleus and & is the mass number of the nucleus. In the impulse approxi-
mation, the NN i-matrix elements needed in Eq. (8}are equated to the on-shell NN amplitude for mo-
mentum transfer q =k —k . With our conventions, this relation is

—(m/2w)(k'~t, . ~k) = 2ikf (q', s)exp(iq r,. ), (9)

where 5 is the Lorentz-invariant NN amplitude defined as follows'":
pP 5 5 5 p 5S=Fs+Fyyl+y, +FTgl 62p. +Fpy1 y2 +FAyl yl y2 ~2p (10)

Subscripts 1 and 2 distinguish Dirac operators in the spinor space of the two scattering particles. The
five complex amplitudes for scalar (S), vector (V), tensor (T), pseudoscalar (P), and axial vector (A)
interactions depend on q and s, the invariant energy parameter. They are determined directly from
the NN phase shifts which parametrize the physical NN scattering data. "

The following relation for the single-scattering amplitude for proton-nucleus elastic scattering is
deduced by combining Eqs. (7)-(9):

E, , "'(k', k; E) = 2iku, .(k')g,. (0
~
$(q)exp(iq r,. ) ~0)u, (k)

Notice that for a spin-saturated nucleus, this matrix element involves a trace over struck-nucleon
spins which eliminates all but the scalar (E~) and time component of vector (y, 'E~) terms from the
Dirac scattering amplitude of Eq. (10). Thus, Eq. (11) simplifies to

F,i, '"(k', k; E) = 2iku, ~ (k') [E~(q)p ~(q) + y, 'E~(q)p ~(q)] u, (k),

where the scalar and vector form factors of the nucleus are defined by

p, (q) = &0IZ;exp(iq r;)I0&, p,(q}= &0IX'; Y exp(iq ~ r,. )lo&.

(12)

(13)

Equation (12) defines the Dirac impulse approximation. It consists of a scalar and a, vector term
which are fully determined by the NN amplitudes and the nuclear density.

Generally the proton-nucleus scattering involves substantial multiple-scattering effects and Eq. (12)
does not provide an adequate approximation to the scattering amplitude. Most of the multiple-scatter-
ing effect can be simply taken into account by use of the optical potential U00 which is iterated to all
orders to define the elastic T matrix as in Eq. (6). With expansion to leading order, Eq. (6) reveals
that the impulse-approximation optical potential (the part which is first order in the NN i matrix) must
be equal to the impulse-approximation T matrix of Eq. (8). This procedure neglects nuclear-medium
modifications of the NN interaction, off-shell effects, and intrinsic corrections of order A to the
optical potential. Implicitly we assume the operator form of the NN amplitudes in Dirac representa-
tion to obtain

(k'I&«"' Ik& = &k'IT..'" Ik& = —(4i»/m)[E, (q)p, (q)+ w, 'E,(q)pgq)]
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The coordinate-space optical potential is found by Fourier transformation. If we approximate the
NN amplitudes by forward (q=0) values E» =Es—(q'=0) and E~,= E„—(q =0), the coordinate-space optical
potential takes the simple form

(18)

Uoo' '(r) = —(4im'k/m)[Esops(r)+ yioEyopy(r)], (15)

which is the Dirac equivalent of the "ip" approximation with ps(r) and p„(r) being the scalar and vector
densities.

A matrix transformation has been derived which relates the Dirac amplitudes of Eq. (10}to the usual
c.m. -frame NN amplitudes in Pauli spin representation:

(2ik, ) f, =A+Be, o, + iqC(o, „+o,„)+Do, .qo, q+Eo„o„. (16)

For forward scattering, this matrix may be inverted to provide an analytical form for the Dirac ampli-
tudes needed in Eq. (15), i.e.,

y+ 1 i~2 2y2
E&0= [2y (1+y)] y(2y+ 1)AO+(2y —1)BO+ 2my(2y —1) Co — — Eo (17)

y+ 1 &i~ 1
E 0= [2y (1+ y)]

'
yAQ —Bo —2my

1 Co+
2 1}Eo

where y = s'i'/2m is the ratio of NN center-of-
mass energy to nucleon mass and A, =A(q' = 0),
etc. Furthermore, the forward amplitudes Ao,
B„and Eo can be expressed directly in terms of
observables:

o(1 —ip) —a r(1 —ipr)
Ao 8 ~ Bo

—mod(1 —ip~}Eo+Bo 16

(19)

where 0 is the total NN cross section and 40~
and Loi are cross-section differences in pure
transverse and longitudinal spin states, respec-
tively. The forward spin-flip amplitude Co is
fixed by NN polarization observables and it plays
a dominant role in causing I'

~o and I:~o to be
large in magnitude and opposite in sign. Equa-
tions (15) and (17)-(19)provide direct links be-
tween NN observables and the Dirac optical po-
tential. The presence of double-spin-flip ampli-
tudes B, and Eo in the Dirac optical potential is
interesting as these terms are not present in
standard treatments; however, the effects are
not large.

Figure 1 shows the scalar (S) and vector (V}
terms in the optical potentials of Eq. (15) based
on central nuclear density p~=p~=0. 16 fm '.
The NN amplitudes used are an isospin average
of pp and pn amplitudes calculated from a recent
phase-shift solution. " There is qualitative agree-
ment between the impulse approximation and the
phenomenological potentials —in particular the
very large scalar-vector difference is explained.
The ratio —Re V/ReS shown in the figure is with-
in 5% of the empirical values. From Eqs. (17)
and (18), the spin-flip term (C„.) dominates the
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FIQ. 1. (a) Scalar and vector Dirac optical potentials,
S and V, respectively, for p~

= p~= 0.16/fm nuclear
density vs proton laboratory kinetic energy. The solid
lines show the real parts and the dashed lines show the
imaginary parts based on impulse approximation. The
filled and unfilled circles show corresponding results
found by phenomenological analysis of proton-nucleus
scattering data. (b) Ratio of real vector to real scalar
strengths based on impulse approximation (solid line).
Points are based on phenomenological Qts to data.
Dashed line shows the ratio m/F»b.
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scalar-vector difference and it explains the ap-
proximate energy dependence I/E„~ seen in Fig.
1(b). The imaginary parts of the optical potentials
are in accord with "tp" and thus the basic reac-
tion is quasifree NN scattering. Empirical
strength parameters" shown iu the figure are
uncertain by about 10% to 15% (eight additional
parameters were varied). " Indeed the impulse
approximation based on Fq. (14) has been found
to give an excellent fit to 500-MeV P-"Ca data
(cross section, analyzing power, and "Q") soith-
out any adjustable parameters. " Thus the agree-
ment of Dirac impulse approximation with data
goes well beyond the qualitative agreement seen
in the figure. The impulse-approximation results
are evidently too large at low energy (-100 MeV)
and in this region nuclear-medium effects are
expected to be important. '
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