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The possibility of a, long H-meson lifetime is explored, in which case the weak mixing
~~~les 82 and 8 3 are quite small. This allows the derivation of a louer bound on the top-
quark mass as a function of the &-meson lifetime, by comparison of the short-distance
prediction for the CP-nonconservation parameter e with its experimental value. The
bound is significant for rs &4x10 ~3 s.
PACS numbers: 14.80.Dq, 12.35.Eq, 12.70.+q, 14.40.Jz

In the standard six-quark model of the strong, weak and electromagnetic interactions the quarks are
in left-handed doublets

and right-handed singlets of the weak SU(2) gauge group. The primed fields are not mass eigenstates,
but are related to the mass eigenstate fields d~, s~, and b~ by the unitary transformation'

d' Cl —SlC3 —S lS3

s ib i6S lC2 ClC2C3 S2S3e ClC2S3+S2C3 e

l ib HS 1S2 ClS2C3 + C2S3e Cls2S3 —C2C3e

where c, =-cos0, and s,. =—sin8, , i & (1,2, 3,5I. The
phases of the quark fields are chosen so that ~„
~„and 83 lie in the first quadrant. The quadrant
of 6 has physical significance and cannot be fixed
by convention. Experimental information from
beta decay gives s,2= 0.05. The observed valid-
ity of Cabibbo universality implies the further
constraint' s, ~ 0.5.

The 8 meson can have a lifetime as short as
—10 "s. On the other hand, if s, and s, are
small, the l.ifetime can be arbitraril. y long. With

s, and s, small, the top quark must be heavy in
order to obtain the observed degree of CP non-
conservation in kaon decay. In this paper, we
compute the lower limit to the top-quark mass as
a function of the lifetime of the B particle.

Various constraints of the mixing angles have
been derived from comparisons of the measured
values of the CP-nonconservation parameter &

and the K~-Ks mass difference with predictions
for these quantities based on a short-distance ex-
pansion. ' An upper bound on the top-quark mass
has been derived by comparing short-distance

! predictions for the K~-Ks mass difference and
theK~- p'p decay rate with experiment. 4 Un-
fortunately these predictions are not reliable,
since it is difficult to justify a short-distance ex-
pansion for the K~-Ks mass difference. Higher-
dimension operators, such as the time-ordered
product of two effective Hamiltonians for As =1
weak nonl. eptonic decays, are neglected because
they lack a factor of m, '. Matrix-element en-
hancements, such as those that take place in
K- mm(I = 0) decay, ' probably make these higher-
dimension operators more important than the
short-distance piece. The same criticism does
not necessarily apply to the use of a short-dis-
tance expansion for the CP-nonconservation
parameter &. It is l.ikely that the higher-dimen-
sion operators do not contribute a significant
imaginary part to the K'-K' mass matrix in the
basis in which the K'- mm(I = 0) amplitude is real.

Since the b quark is heavy compared with the
scale of the strong interactions, B-meson decay
can be approximated by the decay of a free b
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quark. Then

I's = I'(b —c)+ 1 (b —u ),
where

I'(b-c)=(G, 2m, 3/1921I3)[(c,c,s, +s2c,c3)2+s22C32S, 2](2f (m, /m, )+y(m, /m, , m, /m, )

+ 37', f(m, /m, )(c,'+s, 'c,')+31', I1(m, /m, )[s,'c,'+ (c,c,c, —s,s,c,)'+ s,2s,2s,2]},
I'(b -u) = (G~2m, 3/1927I3)(s, 2S32)(2+f (m, /m, )+ 37i,(c,2+s,2C32)

+ 31',f (m, /m, )[s,'c,'+ (c,c,c, —s2 s,c 3)2+s 22 s 32 s,2]] .

(4a)

(4b)

In Eqs. (4) f, /2, and y are phase-space suppression factors. ' For m, =1.4 GeV and m, =4.6 GeV they
have the values f (m, /m, ) =0.51, h(m, /m, ) =0.19,f (m, /m, ) =0.33, and p(m, /m, , m, /m, ) =0.09. The
quantity q, takes into account strong-interaction corrections to the effective Hamiltonian for I bb I = 1
weak nonleptonic decays, and in the leading logarithmic approximation (neglecting penguin-type con-
tributions)

(M 2) 12/21 -a ( m 2)
—12/23 —a ( m 2)

— 24/21 a ( m 2) 24/23

a, (m, ') a, (m, ') a, (m, ') a, (m, ') (5)

Using the quark masses mentioned previously, M~ = 80 GeV, and AQ&D = 0.1 GeV, we find 1l, = 1.1 (note
that 3l, is roughly independent of the top-quark mass).

For long B-meson lifetimes, the angles 0, and ~3 are small, and to first nontrivial. order in these
small quantities, Eqs. (4) imply

(s,'+s,'+ 2S2S3c~) =4.2x10 'R(b- c)[~,/(10 "s)] ',
s32= 3.9 x 10 2R(b-u)[ws/(10 '2 s)] ',

(6a,)

(6b)

where R denotes branching ratio. Experimentally, 'R(b -u)& 0.09. "Higher-order" contributions to
the B-meson l.ifetime woul. d give even smal. ler angl. es. These effects, however, appear to be very
small. '

The imaginary part of the K'-K' mass matrix violates CP conservation and can be reliably cal.culated
by use of a short-distance expansion. Negl. ecting CP nonconservation from K- 2m decay amplitudes, '
we find for the CP-nonconservation parameter &

s 2gG 2fm 2m 2

P~ 2I ~ C2S2S3S3 'g1(- C1C2 C3+ 2 2 3 3)16v~ 7t (m~ —m~ )S L
2 2m( 2 mt 2 2 i7l /4+ 7i2 (cls2 c3+s2c2s3c3)+wj3 ln 2 (clc2 c3 —cls2 c3- 2s2c2s3c3) e' m. m

In Eq. (7), ll» li» and 7l3 take into account strong-
interaction corrections to the effective Hamilton-
ian for I b,s I =2 K' K' mixing. "-They are rough-
ly independent of the value of the top-quark mass,
and for m, =1.4 GeV, m, =4.6 GeV, M~=80 GeV,
AQGD 0.1 GeV, and a, ( p') = 1 have the fol. lowing
approximate values: gy 0 7p p2 0 6 and p3
=0.4. B is the factor that relates theK'-K' ma-
trix element of the local operator [s„y"(1-y,) d„]
x[s&y&(1 —y3)d&] to fm» . We use f=0.13 GeV.
In the soft pion and kaon limit the magnitude of
B is determined in terms of the measured K- m m' amplitude and the coefficient of the I=

&

operator in the effective Hamiltonian for l 4sl = 1
weak nonleptonic decays. " With the pa,rameters
used previously, the magnitude of B is equal to

! 0.37. Note that the quantities q„g„and q3 de-
pend on the subtraction point p, as [ a(p, )]2' '
while B depends on the subtraction point as
[a, ( p, ')] ' ', leaving the physical. quantity e inde-
pendent of our arbitrary choice of subtraction
point.

We can derive a lower bound on the top-quark
mass, m, , by substituting the experimental val-
ues2 e =(2.27 x10 3)e "/4 and m» —m» = —3.5
x 10 "GeV in Eq. (7) and considering all val. ues
of the angles &» 8» and 6 al. lowed by Eqs. (6).
In Fig. 1, we show the bounds as a function of
the B-meson lifetime, assuming the current ex-
perimental limit I (b -u)/I'(b -c)& 0.1 in (6). We
do not consider values of m, greater than 60 GeV
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FIG. 1. Lower bounds on the top-quark mass as a
function of the B-meson lifetime. The stronger bound
is relevant for cos5& 0. The shaded region is excluded
whatever the sign of cos6. These bounds assume that
I'(b —u)/I'(b c) & 0.1. Also shown is a quoted upper
limit to the B Metime (Ref. 12).

since the derivation of Eq. (7) requires m, small
compared with M~. Bounds for c~&0 and c&& 0
are plotted separately, with c~ & 0 giving a strong-
er bound on the top-quark mass. This is because
for c~& 0 there can be no cancellation in Eq. (6a)
and the consequent smallness of s, and s, keeps
the coefficient of the m, '/m, ' term in Eq. (7)
small as well. If the top quark is found to have
a mass consistent with the c& & 0 bound, but not
consistent with the c ~ & 0 bound, then the phase
6 is determined to lie in either the second or
third quadrant.

We have not assumed any knowl. edge of the sign
of B. The measured phase of & implies that Bsz
&0 for c~&0. However, Bs& can have either sign
for c~& 0 and the bound in Fig. 1 corresponds to
Bs ~ & 0. Bs z & 0 implies a much more stringent
constraint on the top-quark mass, corresponding
to m, & 60 GeV for all 8 l.ifetimes pl.otted in our
figures.

If the experimental. limit on I'(b —u)/I'(b —c) is
improved, then our bound on m, is al.so improved.
Figure 2 shows the lower bounds on m, for c ~

& 0
and c~ & 0 when we require I'(b-u)/I'(b-c)& 0.05.

The bounds shown in Fig. 1 become useful for

FIG. 2. Lower bounds on the top-quark mass as a
function of the B-meson 1ifetime. Here we assume
that 1(b —u)/I'(b-c) ~ 0.05. Such an improved result
would lead to stronger bounds on the top-quark mass.

~~&4&10 "s. For example, if &~ exceeds 10 "
s, the top quark must be heavier than 30 GeV
and toponium is inaccessibl. e to THISTAM. If the
experimental upper limit on F(b -u)/I'(b —c) is
improved by a factor of 2, the bound becomes 40
GeV. The current experimental. upper limit" on
7g is 'Tg& 1.4 && 10 ' s. If the values of m, and T~
turn out to l.ie in the excluded region, new physics
(like the existence of a fourth generation) is man-
datory. If they l.ie between our bounds, we have
determined that cos6 & 0, thus resolving a quad-
rant ambiguity of the Kobayashi-Maskawa model.
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Note added. —For ~~ =10 "s, the lower bound

(c~ & 0) on the top-quark mass in Fig. I occurs at
s, =0.1, s, =0.06, and sz —-0.06. For these values,
the middle term (proportional to m, ') in Eq. (7)
contributes about 45/o of e. We note that the lower
bound always comes from extreme values of the
range of angles consistent with Eq. (6). Generic
values naturally give a larger top-quark mass.

A major theoretical. uncertainty in our bound is
the value of B. If B were increased 25/o to 0.46

by, for example, higher-momentum dependence
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in the amplitudes for K- ~m(I = 2) and for K' Pi'
mixing, then the l.ower bound on m, in Fig. 1
would decrease to 24 GeV for 7~= 10 "s. Small-
er values of B would give a correspondingly more
stringent bound.

We thank F. Gilman for useful discussions.
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