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Violations of Bell's Inequality in Cooperative States
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Cooperative multiparticle quantum states in an Einstein-Podolsky-Hosen type of experi-
ment are shown to violate a Bell inequality. Thus correlations can occur between wave
packets each having X bosons which cannot be explained within local hidden-variable the-
ories. This provides a way to test quantum measurement theory for multiparticle states.
In these states, a local, positive probability distribution exists for all N. However, the
representation of correlations with this probability distribution is different from that in
standard {Bell-type) hidden-variable theories.
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Correlation measurements over spacelike dis-
tances are known to provide a stringent test of
quantum theory. ' Experiments of this type are
often described as Einstein-Podolsky-Rosen' ex-
periments after these authors' well-known discus-
sion of the possible incompleteness of quantum
mechanics. In recent experiments, ' observed
measurements were shown to violate a Bell in-
equality, which implies that they cannot be de-
scribed within a large class of hidden-variable
theories. The existence of experiments that al-
low a direct comparison between quantum theory
and alternative theories has a great significance
in view of the widespread acceptance of quantum
theory in current physics. However, evidence to
date iA largely restricted to correlations of sin-
gle cascade photons in atomic photoemission. '

In this Letter, a new test of the foundations of
quantum theory is described. This test has the
unusual property that it is a large-scale meas-
urement in which each wave packet includes N
particles. The motivation for this proposal is
that previous Bell-inequality experiments have
been restricted to low intensities, in fact.to situ-
ations involving just one particle per detector.
This restriction to low intensities also holds for
other tests of measurable correlations that dis-

tinguish quantized from classical electrodynam-
ics, as in the case of photon antibunching. At a
deeper level, one can inquire if all nonclassical
effects in quantum measurement theory are lim-
ited to these relatively low particle numbers.

If possible, it is preferable to test quantum the-
ory more rigorously than just at the single-par-
ticle level. The suggestion that nonlocal corre-
lations and cooperative emission of particles be
combined is therefore proposed. The central
point of interest is whether any violation of a
Bell inequality can occur in multiparticle states.
In order to determine this, the correlations of
the intensity of an electromagnetic field, as ob-
served with polarized detectors, will be calculat-
ed for a specific cooperative state of N photon
pairs. This state has similar properties to the
superfluorescent' radiation of a group of N cas-
cade photoemitters, in the approximation that all
the atoms emit cooperatively on a short time
scale.

The quantum-field state of interest is defined
to be

Here N is the number of quanta produced at en-
ergies E„E„.The operators a, ,a, create or-
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It is clear that! Pfj is a well defined state of a
quantum field. ' I wish to calculate the possible
results of measurements on this state according
to quantum theory. The observable measure-
ments will be defined here as intensity correla-
tions of the structure

G (y,'N) =(N!A (l, a, )A (y, b)!N), (2)

thogonally polarized quanta. with energy E, prop-
agating in the +x direction, which are polarized
in the y, z directions, respectively. The opera-
tors b] 52 behave identically, except that they
create quanta with energy E, which propagate in
the -x direction. In general, the four operators
could correspond to any four orthogonal modes
of a boson field. The state!0) is the ground state
of the field. w~ere

y=—cos'9, a= [a,t, a, t, a„a,], b—= [b,t, b, ', b„b,],
A (y, a):—[y 'a, +(1—y)' a2 ] [y' a, +(1—y)' a2] A (~, a) —= :[a,ta, +a, ta, ]

(3)

The correlation G' (y,'N) is proportional to the
probability' of observation of I quanta at position
X, of type "a," with polarizer angle O„and of J
quanta at position -X, of type "b,"with polar-
izer angle L9,. The coefficient y depends on the
relative polarizer angle t9-=e, —9,. The measure-
ment G' (~; N) is identical to G' (y,'N) except
that there is no polarizer in the detection of the
J type-"5" quanta. In the case of symmetric ob-
servations, relative probabilities are defined as

The result of counting J photons at an idealized
detector is a binary experiment, in the sense that
there are either J photocounts observed or not.
It is known that it is just the binary character of
the measurement, together with the polarizer ad-
justment, that allows one to obtain Bell's inequal-
ities. ' Hence Bell's inequalities are directly ob-
tained for this type of correlation measurement.

Sg (9) —g (39) —2= ~(9)- 0. (5)

One can now ask a simple question, on combin-
ing Eqs. (1)-(4). Are there any combinations of
numbers of particles and angles for which Eq. (5)
is violated in quantum theory? If this were the
case, then the predictions of quantum measure-
ment theory would be testable in a region where
one might expect classical ideas of measurement
to be valid, that is, in the region of large num-
bers of particles per quantum state. '

To answer this, the quantum intensity correla-
tion functions can be calculated with standard
techniques, giving the result

The no-enhancement axiom' then reduces Bell' s
inequalities to a form applicable to relative prob-
abilities. In terms of a hidden-variable theory
of this type, one particularly useful Bell-type in-
equality' is

G (y, N) ='
N' (N —n) '

(N+1)(N-I)' ~, (N- J-n)'
Limits of these expressions that are of particular
simplicity occur either for I=J = N (counting all
the photons) or for I =J= 1 (counting just one pho-
ton). These combine to give relative probabilties

g„'(9)= [N-1+y(N+2)]/3N,

g, '(9) =y'

for the cases I =J= 1 and I =J= N, respectively.
For the case of N= 1, these results are identi-

cal, and reproduce the standard Bell-inequality
violation. ' For J =1, the relative correlation
function for large N does not violate the inequal-
ity. In fact the results have a close relationship
with a random, classically correlated polariza-

lim @~i(9)= exp(- Z9'/2).
J~ ao

(s)

In the limit of J=N- ~, the largest violation of
the inequality is given analytically by (~)' "'—2
=0.33245. . . , which occurs at 9 = —', [(ln3)/J]' '.

! tion model.
For J=N, however, there is a strikingly differ-

ent behavior. The correlation is sharply peaked
near!9 = 0, with a stronger correlation than in
any classical model. For all J=N, the inequality
[Eq. (5)] is violated at finite 9. In fact for large
J =N, g~ (9) tends to a limiting behavior as a
function of A'J:
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This limiting behavior is shown graphically in
Fig. 1. It is worth emphasizing that unlike the
case of photon antibunching or other low-order
correlations, there is a nonzero limit to the vio-
lation of the classical inequality at large particle
number.

In view of this nonclassical behavior, it seems
possible that no local, positive probabilistic rep-
resentation" of the state! N) exists N. everthe-
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i(~ 'i~~ w)(p 1'yp 4)+(~ t+~ w)(p

(2~)'(N+ l)(N')'2

Correlations like Eqs. (2) and (3) are simply
calculated on averaging over all complex values
of a and p. One may reasonably infer, since a
calculation with P (n, p) reproduces the quantum
predictions, that Bell-inequality violations do not
rule out all local, positive distribution represen-
tations. In fact, the structure of Eq. (9) is identi-
cal to that proposed by Bell for hidden-variable
theories, except that the function A has values
that are complex.

It is clearly useful to describe a simple way to
prepare these states, by adapting the original
cascade experiment. This would require an in-
put of atoms in the upper state of an E =O, I" = 1,
I' = 0 cascade level structure, under circumstanc-
es similar to those used to observe superfluores-
cence. ' In order to define the field mode, an op-
tically pumped beam with a well defined number
(N) of atoms should be incident on the mode waist
of an interferometer. This should be resonant at
each transition frequency, with a larger band-
width than the atomic natural linewidth, to allow
cooperative emission to take place. The corre-
lations of emitted photons would then be meas-
ured with use of polarized photodetectors at the

less, a suitable positive representation for!N)
can in fact be found for any N, including ¹1.
This is the generalized positive P representa-
tion"" in which the wave function and its corre-
lations are represented by use of a positive dis-
tribution P(a, p) with n = (n, , oj, , n» n, ), p
=(p, ~, p, ~, p„p,). In the case of!N), the result is

G (y,' N) = f P Pn, P)A (I, n)A (y, P) d a d P,

where

I
~mr(- I~I*-

I
Bl*&i2l

!interferometer outputs. It is straightforward to
show, in the case I =J=N, that relative correla-
tions are given within quantum theory by Eq. (7),
and hence should violate the Bell inequality given
by Eq. (5).

Irrespective of the techniques used to prepare
them, states of the structure implied by Eq. (I)
can provide new tests of quantum measurement
theory. These tests are certainly not restricted
to quantum optics, since only the general boson
commutation relations are needed to violate Eq.
(5). It is clear from this analysis that the degree
of quantum or classical correlation depends on
the order of the measured correlation. While
classical behavior may occur relative to single-
particle detection, distinctly quantum properties
are predicted to occur in the higher-order corre-
lations that correspond to multiparticle measure-
ments. Thus the usual classical paradigm that a
large number of particles in one state have clas-
sical measurement properties is not necessarily
true.
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FlG. 1. The violation of the Bell inequality as a func-
tion of the reduced angle 0+J, for J=N=1, 2, 3, 4, 5
(solid lines) and for J= 55, 59 (N = 60) (dashed lines) .
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