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Critical Wetting in Three Dimensions
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A critical wetting {or interface delocalization) transition occurs when the interface be-
bveen two Quid phases becomes infinitesimally bound to an attracting wall. It is shown
that the critical exponents at this transition depend continuously on the parameter cu

—= ksT /(4m(»~o'), where o is the surface tension of the free interface, $» is the bulk cor
relation length in the attracted fluid phase, and T is the transition temperature.

PACS numbers: 68.10.-m, 64.60.Fr

where T =(T —T)/T„and j, is a. constant. The
distance z* of the interface from the wall is pre-
dicted to diverge as

in(1/T)

while the singular part of the surface tension,

(2)

In a previous article' we have shown that mean-
field theory applied to the critical wetting transi-
tion holds above three dimensions but that fluc-
tuation corrections ought to be important in the
physically interesting case of d = 3. The form
of these corrections will be discussed in the
present note. I et us recall that this transition
occurs under suitable conditions in a binary
fluid mixture below the consolute point T, near
a wall which adsorbs preferentially one of the
components of the mixture' (we consider only
the ideal case where the conditions far from the
wall are precisely on the coexistence curve for
the two fluids). This transition may be described
as the delocalization of the interface between the
two components of the mixture: At low tempera-
tures the interface is localized in the vicinity of
the wall (partial wetting), but at some finite tem-
perature T below T, the thickness of the wetting
layer diverges. Within mean-field theory one
finds that this transition may be first or second
order according to the values of physical pa-
rameters such as the potential difference at the
wall. '

Mean-field theory makes a number of detailed
predictions for the phase transition in the second-
order (critical wetting) case. The correlation
length g which describes correlations parallel
to the wall is predicted to diverge' as

which results from the binding of the interface
to the wall, is predicted to obey

$= $0T ) V=(l —(d) (5a)

while for —,'&~&2, we find

"[in~-']--",

v = ( v 2 —v'(d) ', v = [ 1+((4/8) '~'j v

(5b)

and for (d & 2~

g~exp[cv 'ln(1/T)j, (5c)

where c is a constant.
Equations (2) and (3) describing the position of

the interface, and relating 5o to the correlation
length (, remain valid in the presence of fluc-
tuations. Note that (5a) and (5b) both give v - 2

for u ——,
' at the boundary of the first two regimes,

while (5b) gives v-™for ~-2 . The smaller
the value of the surface tension 0, the larger is
the value of cu, and the more important are the
fluctuation corrections to mean-field theory.

In all of our regimes, we find that the charac-
teristic thickness 6 of the interface diverges
~(z*)' ', as T-T, and hence o is small com-

We shall see below that when fluctuations are
taken into account, the behavior at the critical
wetting transition, for d =3, actually depends on
the value of a dimensionless parameter

(o—= ks T/4&/» v,
where $» is the bulk correlation length of the
fluid phase attracted to the wall and o is the sur-
face tension of the free interface. For 0& co &-,',
we find instead of (1)
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pared to z*. Nevertheless, the rare fluctuations
which bring a piece of the interface close to the
wall are important for ~) —,', and it is these fluc-
tuations which are responsible for the change in
behavior described by (5b) and (5c).

Equation 5(a), for small values of &u, has re-
cently been found independently by Lipowsky,
Kroll, and Zia. 4 For large values of ~, these
authors also report an exponential type of diver-
gence, but for reasons we do not understand they
do not find the logarithm in the exponential. (See
also the earlier work by Kroll and I ipowsky. ')
However, Lipowsky, Kroll, and Zia did not find
the intermediate regime given by Eq. (5b) above,
for 2 &m &2.

In all of our discussions, the long-range inter-
action between the wall and the interface arising
from van der Waals forces has been omitted.
This is legitimate provided the bulk correlation
length is very large, and we are thus limited to
the regime in which T is very close to the con-
solute temperature T,. For T - T„however,
the quantity m, defined by (4), approaches a uni-
versal finite constant co„according to the scal-
ing and renormalization-group theories of the
consolute point, ' so that the systems of experi-
mental interest will presumably have ~ close to
this value. A recent Monte Carlo simulation of
the surface tension for the Ising model by Binder, '
together with the determination of the correla-
tion length by Tarko and Fisher, ' leads to the
estimate &u, ~ 1.2 (within a few percent). From
experimental measurements of the surface ten-
sion and of the correlation length (above T,)' and
theoretical results" on g, '/$, one obtains ~,
in the range 1.2 to 1.5, which puts us in the
region where Eq. (5b) is valid with va 10. Be-
cause of "crossover effects" due to the van der
Waals interaction and of the sensitivity of the
exponent to the rather uncertain value of (d, it
seems likely that a quantitative comparison be-
tween theory and experiment for the critical
wetting transition will require a full analysis of
the model with realistic potentials and cannot be
restricted to the asymptotic critical behavior. "

Our calculations employ an interface displace-
ment model in which one writes an effective
Hamiltonian for the location z(p) of the interface
as the function of the coordinate p = (x, y) parallel
to the wall (which we take to be the pla, ne z = 0):

a/k, T = jd,~-;(v.)"V(.)~, (6)

(u = u'/4~. (8)

Equation (7) has been derived in Ref. 1; the ex-
hibited terms are the first two terms in a power-
series expansion in e ', and it is valid to use
this form provided that z is sufficiently /axle
and positive. In Eq. (7) the parameter a vanish-
es linearly when T approaches T and 6 remains
positive (its variation with 1' is negligible).
This model leads to the mean-field results (1)-
(3) if p has more than two dimensions, but for
a two-dimensional interface we need to take into
account the statistical fluctuations and follow as
usual the renormalization-group approach. If
we ignore the restriction z &0 we can use a fieM-
theoretic renormalization-group approach. In
two dimensions all U- V divergences corre-
spond to internal lines starting and ending at the
same point. For exponential interactions this
leads to simple multiplicative renormalizations
of a or b (Ref. 12) given by

a = a~ exp(--,'o.'a ~),

b = b~ exp(-2n'a~), (gb)

in which 4& is the propagator at coinciding points,
cut off at some wave number A, and p, is some
arbitrary wave-number scale:

2
2 2 -Xg p2

A=—ln —+O(A-'). (10)

The (bare) renormalization-group equations (A
-A.A with fixed a~ and b~) are thus given by

a(Z) =ax

b(~) = b~-".
(11a)

(11b)

At the scale A.
—1/$ all the short-distance fluc-

tuations are integrated out and we can take the
effective potential at that scale,

on an appropriate microscopic scale. We have
chosen units where the surface tension of the
free interface obeys o/k BT = 1.

We begin by considering a, model (model I)
where V is given by

V, (z) = -a e ' + be ~ ',
I

where n is the reciprocal of the bulk correlation
length (, so that the parameter ~ of Eq. (4) is
given in current units by

where V is a potential whose form will be speci-
fied, and we assume a short-wavelength cutoff

1388
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and calculate the location z~ of the interface,

[ &V,/&z], * =0,

and the correlation length as

g-'= [s'V /Bz']

The solution to Eqs. (13) is

z + = (4w(u) '~' (1 + 2~) In)

(i3a)

(i3b)

with $ given by Eq. (&a) above.
The renormalization of model I is exact in the

limit T- T provided that the important contribu-
tions come from z large and positive, where the
potential V(z) is small, and where terms beyond
the first two exponentials are negligible. It is
not sufficient that the mean value of the displace-
ment z* be large, however, because the thick-
ness of the free interface also diverges in d=3.
With this in mind the proper renormalization of
V(z) can be understood if we say that the bare
mean-field potential is in effect convoluted with
a Gaussian whose width 6 represents the width of
the interface:

e " ' -e " ' exp(m'u'5'/2) f ~ exp(-s'/25')ds/5(2&)'~' .
The integral in (16) will be a constant (unity) and
the convolution will not modify the initial form of
the potential if [nub' -z] /5 is large and negative.
If we take z ~z *, with z* given by Eq. (14), and
use 5'=(I/2v) In) [which gives the thickness cal-
culated in absence of V~(z), taking into account
fluctuations on the wavelength scale smaller
than $], then the criterion for stability of model
I for j-~ is

(i6)

The renormalization-group equation (11a) for a
is unchanged; the Gaussian interaction is treated
in a similar way and we find that c is not re-
normalized but the thickness 50 increases as

(19)6'(~) = 6,' - (1/2~) I~.
We perform again a dilatation up to the scale A.

=1/$ and solve Eqs. (13a) and (13b) with the po-
tential V&&. The results are nowno. /2~ —(1+2(u)/(4w(u)'i' & 0,

V(z) —V(z) = J dz' V(z')(2nP) ~'exp[-(z' —z)'/2P] . (i5)
The potential V&(z) is the sum of two terms of the form e " ', with n=1 or 2. When these terms are

substituted with Eq. (15) and the restriction z )0 is taken into account, we find that the transforma-
tion is

for n = 1, 2. These conditions are fulfilled for &
1

For ~ ) —, the stability criterion is violated for
the repulsive term be ' ' in the potential V& of
Eq. (7). Thus the dominant contribution to the
repulsive part of the renormalized potential will
actually come from relatively rare large excur-
sions of the interface, corresponding to the val-
ues of z'~0, in the integrand of Eq. (15). In this
case, the exponential falloff of the repulsion at
large distances has no physical importance, and
we may replace the term be '"' by any conven-
ient repulsion of sufficiently short range. In
order to carry out the renormalization, it is
most convenient to use a Gaussian repulsion,
and we are thus led to our model II for the po-
tential

V&& (z) = -ae ' +(c/50){exp[ —(z~/250 ) ]j . (18)

z* ~ (2/v) '(In( ——', In in/) (20)

with ( given by Eq. (5b) above, provided that ~
& 2.

We can now repeat the stability analysis of Eq.
(16) above. Using the solution to model II, we
find that (o.8 —z*)0--~ for &v &2; thus the re-
normalization of the attractive exponential -ae
indeed comes from large values of z' and the
form of this term is unchanged. At the same
time, we again find that (no. P -z*)/5- ~ for n) 2 if ~) —,'. Thus it is consistent to ignore the
exponential tail of the repulsion, and to replace
it by a Gaussian.

For ~) 2, there is no stable renormalization
of model II. We expect that the important con-
tributions to the attraction as well as the repul-
sive terms will now come from short distances
and therefore we may replace both terms by
Gaussians; we use the form

V„,(z) = ——exp[-(z- &) /260']+ —exp[ -(z + &)'/260'] .
0 0

This model was earlier considered by Kroll and Lipowsky, ' but our results differ somewhat from

(21)
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theirs. Under renormalization 6, increases ac-
cording to Eq. (19), but f, f, and g remain un-
changed. Solving again Eqs. (13), we now find

z *= (2/&) 2(ln t —~ ln ln $) (22)
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