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Diatomic Molecules and Metallic Adhesion, Cohesion, and Chemisorption:
A Single Binding-Energy Relation
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It has been discovered that a single relation between binding energy and interatomic
spacing can describe the energetics of diatomic molecules, bulk metals, bimetallic inter-
faces, and gas atom-metal surface interactions.
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where

a*=(a —a )/l. (2)

E(a) is the total energy as a, function of the inter-
atomic separation distance a, ~ is the equilib-
rium binding energy, a the equilibrium separa-

Universal features associated with bonding in
diatomic molecules have long been recognized. '
Potential-energy relations 'or example, Morse
or Rydberg functions 'nvolving a few param-
eters in simple analytic forms have been found
to represent well the energetics of a wide variety
of diatomic molecules.

Such two-atom potential functions are not ap-
propriate for metals, however. For metals it is
well known that there are strong volume-depen-
dent forces which can never be expressed as
pairwise interactions. ' Despite this, we will
show that a single binding-energy relation can
be found which accurately describes diatomic
molecules as well as adhesion, cohesion, and
chemisorption on metals. This universality re-
veals a commonality between the molecular and
metallic bond.

For metals, the total energy as a function of
interatomic distance is very difficult to obtain
theoretically and cannot be determined by use of
modern experimental techniques. However, we
have previously discovered" separate universal
relations E*(a*)for adhesion, chemisorption,
and cohesion of the form

)d'E(a)/da' I,

d2Eg(a)lc) I

dt's

The value of d'E*/da*'~IO is arbitrary, and it is

tion, and I the scaling length. In our previous
work, the length l was assumed to be proportion-
al to the screening length of the host electron
gas at an appropriate equilibrium electron den-
sity. Tests of Eels. (1) and (2) using ab initio
results for E(a) revealed accurate universal re-
lations E*(a*)for adhesion of simple metals and
chemisorption on simple metals. The accuracy
was less apparent for cohesion of metals. Dif-
ferent universal relations E*(a*)were found for
chemisorption, adhesion, and cohesion. It will
be shown that these differences are not neces-
sary.

It would be highly desirable to relate metallic
universality to that of diatomic molecules.
Screening lengths have little meaning for mole-
cules, however. In this paper we will take the
scaling length to be a free parameter. This is
done so that we can compare the binding-energy
versus distance relation for all the different
physical systems, including diatomic molecules,
on a common footing. If one knows the universal
relation, E*(a*), ~ and l can be found from any
two independent observable measurements of
the binding-energy relation. For example, if we
assume that the equilibrium binding energy,
can be measured, then l can be found by taking
the second derivative of Etl. (1):
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convenient to set it equal to 1. Thus,
i/2

d'E(a) /da'
I

In this way, the scaling length can be determined
from ~ and the second derivative of the energy
with respect to displacement at equilibrium. The
latter quantity can be determined by the vibra-
tional frequency of a chemisorbed atom or an
isolated diatomic molecule, an interfacial elastic
constant, or a bulk modulus, depending on which
state of matter is of interest.

Equation (4) can be tested with the available &b

initio E(a) results. The excellent accuracy found
earlier' in E*(a*)for adhesion and chemisorp-
tion was maintained by use of Eq. (4). The ac-
curacy for cohesion was significantly improved.
Most importantly, we found that the resultant
universal relations E*(a*)for adhesion, cohesion,
chemisorption, and isolated diatomic molecule
energetics zvexe all the same to a high degree of
accuracy. Representative results are shown in
Fig. 1 for each of the four types of interactions.
One can see that all of the universal relations
fall on top of each other. That is, while the
numbers ~ and l vary from material to material,
E*(a*)does not.

Thus, there is a single binding-energy relation
for all these seemingly diverse systems. The
metallic bond at an interface or in the bulk main-
tains a common dependence on interatomic spac-
ing. This commonality extends to gas atoms
interacting with metals and to the diatomic mo-
lecular bond. This reveals a fundamental re-
lationship between the molecular and metallic
bond. There is an underlying simplicity in nature
that has not been recognized heretofore.

Note that H, ' can be solved exactly and this,
together with the variety of approximations used
for the three other systems in the figure, argues
that this universality is not due to a theoretical
approximation. Finally, note that the differences
found in our earlier work in the universal rela-
tions for adhesion, cohesion, and chemisorption
are not needed. They presumably have their
origin in the assumption that l is proportional to
an equilibrium screening length which is some-
what arbitrarily defined for each system.

A knowledge of the existence of universality
implies relationships between seemingly dispa-
rate physical phenomena. In a forthcoming publi-
cation we will show that considerations of uni-
versal relations allow metallic surface energies
to be determined in terms of the cohesive ener-
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FIG. 1. Binding energy as a function of interatomic
separation for four systems as noted, scaled as de-
scribed in the text. The H2+ results were taken from
Ref. 5, the Al-Zn interface energies from Ref. 3, the
oxygen chemisorption binding energy from Bef. 6, and,
finially, the Mo binding energy from Ref. 7.
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gies. Also, a simple relationship between ad-
sorbate-substrate vibrational stretch frequencies
and desorption energies follows from the univer-
sal relationship.
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