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Comments on_‘‘Transverse Electromagnetic
Waves with E | B”’

The claim by Chu and Ohkawa' that a general
class of transverse electromagnetic (EM) waves
with parallel E and B fields exists is shown glo-
bally to be false by using symmetry and topologi-
cal arguments.

For simplicity, let us conside_g the symmetry
arguments in vacuum. VX B =B is not invariant
under space inversion, yet the remaining three
equations of Maxwell’s equations are invariant.?
In other words, in R® the remammg three Max-
well s equations require that E be a vector and
Bbea pseudovector. But B _being a pseudovector
is inconsistent with VxB =kB except for B= =0,
where kisa scalar. In fact, if we replace Am—
pere’s law by V xB kB the field variables of
this new set of equations cannot form an EM field
tensor as do F¥ of Maxwell’s equations nor do
they have the same properties. Thus, there are
no transverse EM waves with Ell B in R® in the
global sense.

As an example consider the formation of stand-
ing waves in a cavity with mirrors, as suggested
by Chu and Ohkawa. A left-handed circularly po-
larized EM wave in a vacuum can be described by

E; =kAli cos(kz — wt) =] sin(kz - wi)],
B, =kAli sin(kz - wt) +] cos(kz — wt)].

Now E, and B, satisfy v xB, =(1/cpE, /ot =kB,,
Vv xE; =(-1/c)9B, /ot =kE,, and V *E, =V- B =0.
The reflected wave is a right-handed polarized
wave in the opposite direction:

-

-

E,=kA[icos(kz - wt) +j sin(ez - wt)],
B, =kAl -1 sin(kz - wt) + ] cos(pz — wt)].

The resultant EM fields are E, =2kA7 cos(kz— wt),
=2kRAj cos(kz wt). This is a linearly polar-

1zed wave with Et perpendicular to _I§t, and when
kz -~ wt =(odd integer)7 /2 both _f}t and Et become
zero vectors. Certainly they are “parallel” to
each other, but they are so only at isolated points
in space and time. The existence of EM waves
with E B is not excluded locally, but the global
existence of the said waves in R? is explicitly ex-
cluded. This can also be shown by topological ar-
guments in a simple closed cavity or in a simple
torus.?

This example contained trivial boundary condi-
tions. It may be possible to find examples in

. ishing of the second Betti number of S [b,(S)].
" from the Poincaré duality theorem, we have b(S) =b,(S)
.# 0. Since b,(S) =0, then although v B 0, there does

which more complex, nontrivial boundary condi-
tions may lead to standing waves with EH B in the
whole cavity. Evtuhov and Siegman® have pro-
posed an example with nontrivial boundary condi-
tions in which two A/4 plates are introduced be-
tween the rod and the end mirrors of a laser cavi-
ty. A right-handed polarized EM wave traveling
to the right is reflected with the same polariza-
tion by the end mirror producing circularly po-
larized standing waves with uniform energy den-
sity in the cavity. An analysis similar to that in
the previous example yields the same conclusion,
i.e., EM waves with E B do not exist globally in
the cavity proposed by Evtuhov and Siegman.

In summary, I have shown that there exist no
global El B waves in space with trivial topology
(boundary conditions). The possible existence of
such waves may require that the boundary condi-
tions for the physical space be more complex and
nontrivial,
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SAssume that the space-time M is an orientable, con-
nected, four-dimensional C* manifold endowed with a
Lorentz metric and M=SXR', The three-manifold S is
assumed to be compact without boundary. Then the
source-free Maxwell’s equations can be represented
by df =0 and 6f =0, where d is the exterior derivative,
f is the EM field two-form, and 6 =d*, with the aster-
isk denoting the star operator. Thusf is a harmonic
two-form. From de Rham’s theorem, the existence of
a nonzero harmonic two-form in S implies the nonvan-
In fact,

not exist a vector potentlal A such that B=VxA over
the entire S. Consequently, no vector potential A satis-
fies Eq. (7) of Chu and Ohkawa globally in S and there-
fore transverse EM waves with E || B cannot exist
globally in S. It should be noticed that the conclusion
of Chu and Ohkawa was based on the local existence of
a vector potential which satisfies their Eq. (7).
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