VoLUME 50, NUMBER 18 PHYSICAL REVIEW LETTERS 2 May 1983

Explicit Evaluation of Anomalies in Higher Dimensions
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The one-loop Kaluza-Klein anomaly is evaluated explicitly for gauge theories in six,
eight, and ten dimensions. The result is well defined and unique, despite the nonrenor-

malizability of the theory.
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Strings have played a role in many branches of
physics from polyatomic molecules to vortices in
type-II superconductors. Recently the space-time
analog of vortices has entered cosmology (cosmic
strings) in the theory of fluctuations and galaxy
formation. It is highly probable that strings may
soon play a role in particle physics. There has
long been the curiosity that the D =10 string theo-
ry may be finite and recent advances in the super -
string have demonstrated the absence of tachyons,
etc. Since D =10 dimensions is requived for the
string, a successful dimensional compactification
of this theory could lead to a viable quantum grav-
ity.

It is generally believed that all elementary-par-
ticle interactions except gravity are describable
by non-Abelian gauge theories. Such gauge theo-
ries share with quantum electrodynamics the
property of perturbative renormalizability and
hence complete calculability for small couplings.
This domain of applicability covers the electro-
weak forces for any normal energy (less than a
few gigaelectronvolts) and the strong forces at
high energy (more than a few gigaelectronvolts).

Historically the realization that gauge theories
are renormalizable, even with the gauge group
spontaneously broken, focused attention on the
subject of chiral anomalies since the latter pro-
vided the only known consistency condition re-
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FIG. 1. Triangle diagram for D = 4.

quired for gauge theories. The anomalies had
been studied much earlier and appeared then as
only an arcane curiosity, but in gauge theories
they become of central importance: The chiral
fermions must be such that the anomaly cancels,
otherwise the gauge theory is inconsistent and
hence meaningless.

Now we wish to consider® a gauge theory in
more than four dimensions, generally in an even
number of dimensions such as 6, 8, 10, .., .
Such a theory is a priori nonrenormalizable and
thus inconsistent and meaningless. The reasons
for considering this inconsistent theory are two
in number: First, contrary to expectations, we
shall find that the one-loop anomaly in such a
theory is well defined and unique, and indepen-
dent of the severe ultraviolet divergences associ-
ated with nonrenormalizability. Second, this
kind of nonrenormalizable gauge theory can arise
as the limit of small Regge slope of a string
model. We have in mind, for example, the ten-
dimensional supersymmetric string.? Here there
is the hope that the string theory is completely

FIG. 2. Box diagram for D = 6.
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finite and hence all the ultraviolet divergences
associated with the nonrenormalizability of the
low-energy gauge theory are successfully cut off
by the very-high-mass Regge recurrences and
daughters.

In discussing the string theory, we must empha-
size that although the ultraviolet divergences may
be modified by the very-high-mass particles in
the theory, the anomalies are not so modified.
This is because, as has been shown elsewhere,®
the anomaly receives contributions only from
zero-mass fermions. This is why the anomalies |

in nonrenormalizable Kaluza-Klein gauge theory
are interesting: First, they are well defined
despite nonrenormalizability, and second, they
are germane to finite higher-dimensional string
theory.

In what follows, we shall first consider anoma-
lies only in Abelian theories. The generalization
to non-Abelian theory will be discussed later; it
involves no new complication.

Let us first briefly recall the case of the tri-
angle anomaly* for D=4. The relevant three-
point function is written

Vi NS (PIPZ) =ST', AU (Plpz) + (a/8772)€K Al oc(pza _ploc), (1)

where Iy, is the Feynman integral for Fig. 1 [ =5(p, +p,),

v :"]é'(pl —pg)],

T s (p10) fdk Trly sl =)y vk +d)y y F +1))

(2m)* (= a)*(k + q)*(k +7)?

and ST', ,, implies Bose symmetrization of (p, x,Psp).

) (2)

Setting p, \V« »u=0 requires 2 =+ 1 in Eq. (1),

whereupon

29 Vi \u=2°X3€ \yap Prabss 3)
with

X, =+1/2%2, )
The factor 2° in Eq. (3) takes account of the three (1 +v,)/2 projection operators needed in Eq. (2).

These steps can be carried out for D >4, For D =6, we write the four-point vertex

Viennw(Pabobe) =STwnuv(Pabobe) + @/2'1°)€ \uua(Py abep+ Do alap+Paalsp). (5)

Here the Feynman amplitude 'y, ,(p.0,0.) for Fig. 2 is given by
Ty rvo(5ubotd) f % Tely (¢ = d)y v @ +dly o+ Vol = 7)) ©)
¢ (2m)® (e =q)?(k + q)2(k + 7 ) (k = 7,)?

Here ¢ =3(p,+pp +P.) and v, =(q - p,), etc. To evaluate p, I, One uses

Po==W -4+ U -7)). ("

The second term in Eq. (7) gives zero in conjunction with Eq. (6) since a third-rank pseudotensor de-
pending on only two six-momenta must vanish. The first term in (6) gives

d%  Trly ¥ +dy, (%+/)y ¥ - 7‘)]

ba )\FK Apv=

(@m)° D.*"(k)

where the denominator is in the notation
D.%%C=(k+q)2(k +7,)2(k -7,
Shifting momentum according to 2’ =& —p, gives

D+ab0(k;) =p_b¢ a(k) :(k —q)z(k+ (" )Z(k —Vb)z’

®)

9)

(10)

where D_"°“ is the corresponding denominator occurring in the contraction p, \I'x v 2 (psPcPs). Com-
bining these terms and taking account of the surface term arising from the integration being linearly

divergent gives

pa )\(PK Apvt FK]JI)}\) == (48773)- lexuuaﬁypa ypb ch ye
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Noting that this is totally Bose symmetric and that p, \I'xyxv=0q 3T« v u=0 gives
pa )\SI‘KMHJ:—(24n3)-1€K}1U0¢BypaO(pbﬁpcy- (12)

Thus, in Eq. (5), we need a =+ 1 to ensure p, \V« av=0. To evaluate 2¢, L'y ,,, we use a similar proce-
dure because the same denominators occur. For example,

"Pb chy

paﬁpby

_ 8
ZquK)\uy“ Wfdske)\“ VOCB)’I:DJrabc(k)

+ D_abc(k)J (13)

allows us to use again D.*°°(k’)=D_%°*(k), with &’ =k —p,, and hence combine with another term in

2qST xuv. The overall result is

2qKSFK Apv== (8773)_1€ AL vap ypa ocpb ch Y

(14)

and finally the square anomaly for D=6, normalized by

ZQKVK A u(papbpc) =24X4€ ApvoB ypa ocpb ch v
is

X,==2"%"3,

(15)

(16)

Of relevance to the D =10 string®’ 2 is the hexagon anomaly which we have calculated to the one-loop
level. In an obvious generalization of the notation used above we have

Vi Al upg(papbpcpdpe) =SF:< Au llpo(pa pbpcpdpe) +(160775)_ lex AH vpoocﬁyé(pb ocpc B Pd 'ype §tee -)-

am

In Oy apwpo(PabstePabe), contraction with, say, p, \ gives rise to denominators of the form lq
:é’(pa +Dpp+ P+ Dy +pe), i =(q —pa), etc., San =(q "pa_pb)’ etc.]

D 20t (k) = (k£ q)*(k +7,)?(k +54.)°(k =S4 )°(k —7 )

(18)

and, with 2’ =k =p,, one finds D,*?°%¢ (g’)=D_%°?¢4 (). The other pairs of denominators obtained by
permuting (p, wslecvslapsrPe ;) all lead to additive contributions and one has finally

ba )\SFK Apvpo == (160ﬂ5)_1€xu vpooB yéCpb ablcsPa ype sDse.

(19)

Similarly, all the 2X5!=240 terms in (2¢),ST, auvpo combine to give equal-sign surface terms when
we permute the five external momenta. This sum gives for the hexagon anomaly

29V« Auupo=26X5€)\u vpoaﬁyéepa abvebe ypd sDee

with
Xg=—2710175,
The general case D =2z can be shown® to give

Xn . _:(__ 1)n2- 2ng-n

(20)

1)

(22)

The generalization to a non-Abelian theory is straightforward since it has been shown® that the group-
theoretic piece of the anomaly is an overall multiplicative factor so that, for example, in D =10

20, Vi85 (pabuDopabe) == (167°) 2S Tr(A*APACAPAEAT)E s oo asyscha alosPo yPu sPo ey

where S Tr denotes the averaged totally symme-
tric trace over the group generators A%, A% .,
in the appropriate basis.

We find it remarkable that these one-loop dia-
grams can be calculated completely to find unique
anomalies in the higher-dimensional theories de-
spite their nonrenormalizability. Such anomalies
must be absent (cancelled) in a consistent higher-
dimensional string theory.

We have only summarized the calculations which

(23)

lare actually rather lengthy and will be published
in detail elsewhere.® The crucial point is that the
anomalies are dictated by the homotopy group of
mappings of the gauge group on the (D — 1)-sphere
in Euclidean space, and this is independent of the
severe ultraviolet divergences. We are through-
out regarding the higher space-time dimensions
as physical, and the corresponding degrees of
freedom as dynamical ones which must satisfy
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canonical commutation relations in a quantum
theory.
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