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Explicit Evaluation of Anomalies in Higher Dimensions
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The one-loop Kaluza-Klein anomaly is evaluated explicitly for gauge theories in six,
eight, and ten dimensions. The result is well defined and unique, despite the nonrenor-
malizability of the theory.
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Strings have played a role in many branches of

physics from polyatomic molecules to vortices in
type-II superconductor s. Recently the space-time
analog of vortices has entered cosmology (cosmic
strings) in the theory of fluctuations and galaxy
formation. It is highly probable that strings may
soon play a role in particle physics. There has
long been the curiosity that the D =10 string theo-
ry may be finite and recent advances in the super-
string have demonstrated the absence of tachyons,
etc. Since D =10 dimensions is requi~ed for the
string, a successful dimensional compactification
of this theory could lead to a viable quantum grav-
ity.

It is generally believed that all elementary-par-
ticle interactions. except gravity are describable
by non-Abelian gauge theories. Such gauge theo-
ries share with quantum electrodynamics the
property of perturbative renormalizability and
hence complete calculability for small couplings.
This domain of applicability covers the electro-
weak forces for any normal energy (less than a
few gigaelectronvolts) and the strong forces at
high energy (more than a few gigaelectronvolts).

Historically the realization that gauge theories
are renormalizable, even with the gauge group
spontaneously broken, focused attention on the
subject of chiral anomalies since the latter pro-
vided the only known consistency condition re-

quired for gauge theories. The anomalies had

been studied much earlier and appeared then as
only an arcane curiosity, but in gauge theories
they become of central importance: The chiral
fermions must be such that the anomaly cancels,
otherwise the gauge theory is inconsistent and

hence meaningless.
Now we wish to consider' a gauge theory in

more than four dimensions, generally in an even
number of dimensions such as 6, 8, 10, .. . .
Such a theory is a pviovi nonrenormalizable and

thus inconsistent and meaningless. The reasons
for considering this inconsistent theory are two

in number: first, contrary to expectations, we
shall find that the one-loop anomaly in such a
theory is well defined and unique, and indepen-
dent of the severe ultraviolet divergences associ-
ated with nonrenormalizability. Second, this
kind of nonrenormalizable gauge theory can arise
as the limit of small Regge slope of a string
model. We have in mind, for example, the ten-
dimensional supersymmetric string. ' Here there
is the hope that the string theory is completely

FIG. 1. Triangle diagram for D = 4. FIG. 2. Box diagram for D = 6.
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finite and hence all the ultraviolet divergences
associated with the nonrenormalizability of the
low-energy gauge theory are successfully cut off
by the very-high-mass Regge recurrences and
daughters.

In discussing the string theory, we must empha-
size that although the ultraviolet divergences may
be modified by the very-high-mass particles in
the theory, the anomalies are not so modified.
This is because, as has been shown elsewhere, '
the anomaly receives contributions only from
zero-mass fermions. This is why the anomalies

~

in nonrenormalizable Kaluza-Klein gauge theory
are interesting: First, they are well defined
despite nonrenormalizability, and second, they
are germane to finite higher-dimensional string
theory.

In what follows, we shall first consider anoma-
lies only in Abelian theories. The generalization
to non-Abelian theory will be discussed later; it
involves no new complication.

Let us first briefly recall the case of the tri-
angle anomaly' for D=4. The relevant three-
point function is written

V, ,„(p,p, ) =$1, „(p,p,)+ (~/8 ')c, „„(p,„-p,„),
where I', q„ is the Feynman integral for Fig. 1 [q =z(p, +p,), r =~(p, -p, )1,

d'k»~r ~(k 4)&—.&,(K+A'u(P +r')~
(2v )4 (k —q) (k + q) (k + v)

and Si', z„ implies Bose symmetrization of (P, z, P»). Setting P, zV, q„=0 requires a =+ 1 in Eq. (1),
m hereupon

2q~V~ xp 2 +3~ xp a8 pynpga

with

X, =+ I/2W'.

The factor 2' in Eq. (3) takes account of the three (1+&,)/2 projection operators needed in Eg. (2).
These steps can be carried out for»4. For D =6, we write the four-point vertex

.(p.p p.) =Si' .(p.p p.) + ( /2' ') ~ (p p. + p. p. +p. p ).
Here the Feynman amplitude I', q„„(P,Pt, P,) for Fig. 2 is given by

(2)

(3)

(4)

K XJI U (pQpb pC)
»h g(g g)r, r, (g-+g)x. (f+ g.)r ~ (g -y'.) )

(2v)' (k —q)'(k + q)'(k + ~,)'(k —r,)'

Here q = ~(p, + p, + p, ) and &, = (q —p,), etc. To evaluate p, p', q„, one uses

P'. =-(W-4)+ (N-P.).
The second term in Eg. (7) gives zero in conjunction with Eg. (6) since a third-rank pseudotensor de-
pending on only two six-momenta must vanish. The first term in (6) gives

T h.~,(K+A"(k+ r'.)r (k-H. )~
Pa k K xgv (2&)6 D abc(k) y

where the denominator is in the notation

D, ' "= (k + q)'(k + ~,)'(k —~,)'.
Shifting momentum according to &' =4' —f, gives

D+'"(k ) =D ""(k)=(k -q)'(k+r. )'( k r,)', (10)

where D "' is the corresponding denominator occurring in the contraction P, ql', „„q(P,P,P,). Com-
bining these terms and taking account of the surface term arising from the integration being linearly
divergent gives

p, z(I', x„„+I', „„z)= —(48&') 'e
I ~ asap yp~ g p
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Noting that this is totally Bose symmetric and that p, &I",„z„=p,g, ,&„=0 gives

p, xSI', x»—- —(24'') ' s, » ns yp«pb s p, y.

Thus, in Eq. (5), we need a =+ 1 to ensure P, qV, q„„=0. To evaluate 2q, l', qp, we use a similar Proce-
dure because the same denominators occur. For example,

8i
qK KXPv (2 )s

6A, ~ Pb -s Pc y Pa s Pb y
~pvnSy D abc(k) +

D abc(k)

allows us to use again D+"'(k') =D "'(k), with k' =k —P„and hence combine with another term in
The overall result is

(6~ ) exp syP Pb sP y

and finally the square anomaly for D=6, normalized by

2qKIy'~~pv(papbpc) =2'&a ~pvnsyp. npbspcy~

is

X = —2

(15)

(16)

Qf relevance to the D =10 string' ' is the hexagon anomaly which we have calculated to the one-loop
level. In an obvious generalization of the notation used above we have

I K zp v pc(PaPbPcpdPe) =S~~ xp vpc(Pa PbPcPd Pe) +(16 ~ ) v xp v pansy s(pb nPc s Pd y Pe s + ~ ~ ~ ) ~

In I', z„„p,(p, pbp, p, p,), contraction with, say, p, q gives rise to denominators of the form rq

=~(p, +pb+p, +pd+p, ), r, =(q-P,), etc. , s„=(q-p, -p ),bete. I

D,""' (k) = (k + q)'(k + r, )'(k + s „)'(k —s, b)'(k —r,)'

and, with k' =k -p„one finds D+""' (k') =D ""'' (k). The other pairs of denominators obtained by
permuting (p», P, „,p, p, p, ,) all lead to additive contributions and one has finally

Pa &SI K bp vpc = —(160~ ) EKp vpcns ysepb nPc sPd yPe spy e

Similarly, all the 2&&5. =240 terms in (2q), si', q„,p, combine to give equal-sign surface terms when
we permute the five external momenta. This sum gives for the hexagon anomaly

6
2qK ~K xp v pc -2 +s~ xp vp a ns y s cpa nPb s Pc y Pd spe & (20)

X, =-2-'~-'.
The general case D =2& can be shown' to give

(22)X„+~= (- 1)"2

The generalization to a non-Abelian theory is straightforward since it has been shown' that the group-
theoretic piece of the anomaly is an overall multiplicative factor so that, for example, in D =10

2qKI K xp vpo(PQPbP PdP ) = (16 ) S Tr(+ A + ~ ~ A ) xp a vpynbsepa nPb sPc yPd spe e y (23)

where S Tr denotes the averaged totally symme-
tric trace over the group generators ~", A, ...
in the appropriate basis.

We find it remarkable that these one-loop dia-
grams can be calculated completely to find unique
anomalies in the higher-dimensional theories de-
spite their nonrenormalizability. Such anomalies
must be absent (cancelled) in a consistent higher-
dimensional string theory.

We have only summarized the calculations which

are actually rather lengthy and will be published
in detail elsewhere. ' The crucial point is that the
anomalies are dictated by the homotopy group of

mappings of the gauge group on the (D —1) sphere-
in Euclidean space, and this is independent of the
severe ultraviolet divergences. We are through-
out regarding the higher space-time dimensions
as physical, and the corresponding degrees of
freedom as dynamical ones which must satisfy
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canonical commutation relations in a quantum
theory.
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