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Chaos in the Mixmaster Universe
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A four-dimensional. system of nonlinear difference equations describing the evolution of
the general relativistic mixmaster" cosmological model is studied. The evolution splits
into two parts: one given by a (chaotic) generalized Baker's transformation and the other
by a (systematic) change of scales. The chaotic degrees of freedom are studied in detai. l:
Their evolution may be described by a two-sided shift and the invariant measure for these
variables is found. Strong ergodic properties (mixing, nonzero entropy) are deduced.

PACS numbers: 98.80.Dr

The "mixmaster universe" is a homogeneous,
anisotropic, Bianchi type -IX cosmological solu-
tion of the Einstein equations. ' The fascinating
properties of this vacuum space-time have mo-
tivated a host of studies in gravitational theory.
Misner studied it as a possible explanation for
the isotropy of the observed universe since parti-
cle horizons are removed during certain phases
of its early evolution. Belinskii, Khalatnikov,
and Lifshitz suggested that the mixmaster sys-
tem may be typical of the most general sort of
behavior of Einstein's equations near a singular-
ity. ' The evolution of the mixmaster universe is
entirely non-Newtonian since no Ricci, only Weyl,
curvature is present. Here we will give a com-
plete description of the mixmaster system in its
oscillatory phase, close to a cosmological singu-
larity, prove that the system has very strong
ergodic properties, and demonstrate that the as-
ymptotic evolution (joint probability distribution
for all degrees of freedom) is exactly calculable
in closed form.

The space-time metric has the form~

ds' =dt'-P, ,y,, (t) a'(x)o'(x), (1)

where cr(x) are the differential forms for the type-
IX homogeneous space satisfying do' = e',„v'Aa",
e',„completely antisymmetric, and

y, , = diag(e'", e', e'~).

The Einstein equations lead to three second-or-
der ordinary differential equations for n, P, and

y (the axis scales) and one integration constraint.
It is most convenient to use ~ = lnt; as ~- —~ the
initial singularity is approached. The qualitative
features of the evolution have been well studied:
The mixmaster system asymptotically approxi-
mates a sequence of different Kasner solutions. "
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(x+1+u) '

Z (1+u)
(x+1+u) '
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where p„p„and p, are the Kasner type indices. '

During a typical Kasner cycle, one pair of axes
oscillates out of phase and the third decreases.
We define a cycle as the series of small oscilla-
tions during which there is the monotonic de-
crease of one of the expansion scales, say y. At
the end of a, cycle, the roles of n, J3, andy are
permuted, and in the next cycle one of n and P
decreases monotonically while y and the third
axis oscillate. On approach to the singularity,
the general pattern of oscillations (in cycles) and
permutations repeats itself ad infinitum.

Elsewhere, it was noted that the evolution of
one of the degrees of freedom (the number of os-
cillations in a cycle) is formally chaotic: It pos-
sesses positive metric and topological entropy,
and is isomorphic to a Bernoulli shift. ' Here we
formulate the evolution for all five degrees of
freedom of the mixmaster system and relate it
to previous work. For two of the variables the
evolution is essentially chaotic and we explicitly
construct the invariant measure and a shift for
these. The remaining variables undergo a sys-
tematic evolution which we also can calculate.
Together, these results constitute a complete
description of the mixmaster universe's evolu-
tion as a recurrent series of Kasner-like states.

To describe the evolution simply, we will de-
fine a, set of four variables r = (u, x, s, Z) on a sur-
face of section o. =0, dn/d~&0 by

o =0; =s, (u) =dn s (1+u)
d~ p' (1+u+u') '
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~ equals Z to within an additive constant. Physically, Z and s are overall scale factors, while x and u
determine the relative sizes of the axes and the axis velocities. The approximation used to calculate a
discrete map on the surface of section is that the magnitude of the derivatives is large compared to the
exponentials of o., P, and y.

The basic map, m:(u, x,s,Z)- (u', x', s', Z') for ~' & w, which we will discuss in more detail else-
where, "is

(u —1,x/(1+ x)) if ~&u &1 (oscillations),
(1/u —1, 1+ 1/x) if 1 &u & 0 (bounce);

(s', Z') =(s(1-u+u')/(1+ u+ u'), Z[1+ (1+u+u')x/u(x+ 1+u)]),

(4)

where the variables range ~&u &0, ~&x&0, Z
&0, s &0. If we start from an initial state (u„x„
s„Z0), then h0 = [u,] (integer part of u, ) itera-
tions of the u &1 map (oscillatory map) follow.
The last step of a complete cycle is a "bounce"
to a new set of initial conditions. Equivalent ver-
sions of (4) were derived and studied in Refs. 2,
3, and 5; the virtue of these variables over pre-
vious treatments is that each lies along a sepa-
rate eigendirection for expansion or contraction
of the mapping. For example, the map for Z (s)
is multiplication by a function of u and x which is
always greater than (less than) 1; these scale
parameters undergo a systematic increase (de-
crease) in magnitude.

Here, we are primarily interested in the in-
duced map, M: (u„x„s„Z,)- (u„x„s„Z,), from
the initial conditions of one bounce to those of
the succeeding bounce (as ~- —~, so 7, &~0):

(u„x,) =(1/(u, —[u,]) —1, 1+[u,] + 1/x, ),

1 —(u, —[u,]) + (u, —[u,])'
(1 0 +u 2 1 0

0 0

1+[u,]+1/x, + 1/(u, —[u,])

sponding horizontal strip. The map is a simple
generalization of the well-studied Baker's trans-
formation which is given as (w', y') =(2w —[2w],
(y + [2gg])/2) for zo, y~ (0, 1).' An essential fea-
ture which these maps share is dense periodic
orbits; there are no integrals of the motion un-
de~ these circumstances. This is strong evi-
dence that the exact equations of motion have
very complex dynamics.

The Baker's transformation is isomorphic to a
Bernoulii shift with an alphabet of (0, 1). We now

construct a (generalized) two-sided shift for the
mixmaster map and show that it has a direct
physical interpretation. Belinskii, Khalatnikov,
and Lifshitz, without the above considerations,
showed that the continued-fraction expansion
(cfe) of u, + 1 of the initial state gives the se-
quence of integers [u,.]+ 1 generated by iteration
of the map. ' I et the cfe for a positive real num-
ber, y, be expressed by the semi-infinite se-

The inverse map, M '. (u„x„s„Z0)-(u „x „
s „Z,), which describes the evolution away from
the singularity, is constructed by inverting M
above, with due attention to the ranges of the
variables: ~ &Do&0, ~ &x, & 1. These maps are
approximate when the absolute value of s is larg-
er than the exponential of Z.

We restrict our attention now to the bounce map
for the variables u and x. As ~- —~, expansion
takes place along the u coordinate and contrac-
tion along the x coordinate. Figure 1 illustrates
the action of the map in (x,u) space. The verti-
cal region No. 1: (~ &x & 1, 3 &u & 2) is squashed
in the x direction and stretched in the u direction
to map into region No. 2: (4 &x & 3, ~ &u &0).
Likewise, region No. 3 is mapped into region No.
4. For the entire plane, every vertical strip is
deformed similarily and mapped into a corre-

0
bi

FIG. 1. Under an iteration of the map the vertical
region No. 1 is compressed in the x direction, stretched
in the u direction and mapped into horizontal region
No. 2. Begion No. 3, deformed similarily, maps into
region No. 4. Each vertical strip in the plane under-
goes a similar deformation and maps into a horizontal
strip.
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quence of integers i, :

y =(i„i„i„...) =i, +1/[i, +(1/i, +. . .)].
Define z„=u~+ I and let z, have the expansion

~, = (rn „m „m„~ ~ . ). (7)

Then z» (the kth iterate of zp under the map) is
given as a k shift on the expansion for z„' that is,

&»=(m» m"i" ). (8)

The expansion for any rational terminates in a
finite number of steps. However, in a measure-
theoretic sense, the case of physical interest is
the expansion which continues indefinitely. ' A

given up codes an infinite sequence of oscillations
with [u;] oscillations in the ith cycle.

We find that the map x~ may be formulated sim-
ilarily: Let xp be given by the cfe

x, = (n„n„n„.. . ).

Then the kth iterate of xp is

x„=(m„„m, „.. . , m„n„n„n„.. . ),
where rn,. are the elements of the expansion in z,
above. The map for x and u is equivalent to a
single shift on a two-sided infinite sequence of
positive integers formed by concatenating the
semi-infinite sequences for xp and zp to give
( m 2 m mp n„n„n„.. . ). The inverse map,
M ', is a shift in the opposite direction on the
same two-sided sequence. For evol. ution as ~- ~
(away from the singularity) the number of oscilla-
tions in the ith cycl.e is given by [x;]—1. The
doubly infinite sequence of integers thus corre-
sponds to the entire past and future history (num-
ber of oscillations/cycle) of the mixmaster uni-
verse in its oscill. atory phase. This symmetry
between x and u [which is present in both the m
and M maps, Eqs. (4) and (5)] is a direct conse-
quence of the invertibility in time of the Einstein
equations.

This shift is ergodic and strongly mixing and
has well-defined metric and topological entropy. "
A special class of maps are the axiom-A (AA)
systems, whose essential (chaotic) features are
preserved under small perturbations of the map. "
This stability is a desirable feature for any model
or approximate analysis ef a real physical sys-
tem. Two of the neccessary requirements for AA

are uniform hyperbolicity on a compact phase
space and separate, continuous, expounding and
contracting dimensions. On the one hand, these
assumptions may be overly restrictive for physi-
cal systems; on the other hand, AA systems are
the only systems for which a compl. ete, mathemat-

p(u, x) = 1/[(ln2)(1+ux)']. (12)

This invariant measure corresponds to a probabil-
ity for an integer k in the cfe representation of
ln[(k + 1)'/(k'+ 2k) ] /ln2.

If we define the ratio ln(s, /s, ) = t, and In(Z, /Zp)
=~„ then the probability distribution is

P(u, x, t, v)

= tL(u, x)5(t —In[f,(u)] ) 5(v —In[f,(u, x)]), (13)

where logarithms have been introduced to produce
normalizable probability distributions. The ex-
pectation value of functions of these variables in
the mixmaster universe follows by integration
over the distribution. " Elsewhere we discuss the
calculations of quantities of interest in the non-
linear dynamics of this model: the rate of diver-

ically rigorous theory exists. Although the chaot-
ic part of the mixmaster map fails to satisfy AA,
it is interesting that it does incorporate several.
of the essential features of these systems: The
map has (fixed) eigendirections for expansion (u)
and contraction (x) and is hyperbolic (du, /du,
&1 &dx, /dx, ). However, its derivatives are not
bounded away from 1, nor is phase space com-
pact. As a consequence, orbits are not struc-
turally stable: Small perturbations in the map
can lead to attracting points. It seems to be an
open question as to whether the exact mixmaster
solutions would satisfy the requirements of AA

on some compact subset of phase space.
The strong ergodic properties of the map for x

and u prove that the system, while rigorously de-
terministic, is effectively stochastic; there is no
possibility of forecasting the precise evolution of
a mixmaster universe numerically, since any un-
certainty in the initial conditions would quickly
grow (exponentially in time) as large as the allow-
able phase space. In such a situation, the asymp-
totic probability distribution is of central interest,
since it determines the value of all time-averaged
observables.

For a mapping r„„=T(r„),where r&R", an
invariant measure p (r) is a solution of the func-
tional equation

t 8)= t (T 'A ),
where A is a measurabl. e set of R". If a unique
absolutely continuous (with respect to Lebesgue
measure), integrable lj, exists, it gives the sta-
tionary probability distribution as n - ~ for almost
every set of initial data. For the bounce map (and
its inverse), we can easily verify that
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gence of trajectories, the decay of correl. ation
functions, and the metric entropy. " We address
the following points of physical interest: the rate
of particle production by the curvature, the prob-
ability of mixing and removal of particle horizons,
together with the decay of anisotropy.

Our analytic results will primarily be of inter-
est to relativists, but the system we have studied
may be of considerable interest to dynamicists
as well because it is exactly soluble. We empha-
size that the Einstein equations of motion lead di-
rectly to the map we have studied. The descrip-
tion by means of the generalized Baker's trans-
formation suggests that the general solutions to
the Einstein equations may have extraordinarily
complex behavior. One is led to consider the
questions: Under what circumstances will cos-
mological solutions to Einstein's equations dis-
play chaotic behavior and what variety may be ex-
pected? Of the Bianchi models, only the type-
VIII and -IX appear to have a chaotic evolution.
General relativity is an inherently nonlinear the-
ory; to what extent is the mixmaster system rep-
resentative of the nonlinear effects unique to gen-
eral relativity?
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