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A new master equation describing the irreversible process of a quantum mechanical
Brownian par'ticle is proposed. The master equation is shown to obey the symmetry of
detailed balance leading to a quantum analog of the reciprocity relations, and the fluctua-
tion-dissipation theorem is obtained. The method is applied to the damped harmonic
oscillator. The relation to previous approaches is discussed.
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The problem to describe damping of a quantum
system arises in fields as diverse as quantum
optics and nuclear physics. This question has
been extensively discussed in the literature and
the different approaches are presented in various
review articles. ' While some of these approach-
es have been applied quite successfully to irre-
versible quantum systems, the theory is far
from having reached a status comparable to the
theory of classical random processes because
there are still open questions even of the princi-
ple kind.

For classical processes it is well known that
the microscopic reversibility leads to a certain
symmetry of the random process known as de-
tailed balancing, and the response functions are
connected with the correlation functions by the
fluctuation-dissipation theorem (FDT).' While
these general features should certainly also be
present within a quantum description, it has
proven to be extremly difficult to incorporate
these properties into those approaches' avoiding
a fully microscopic treatment.

In this communication we shall consider a quan-

turn mechanical particle which is acted upon by
a thermal bath and an outside potential. The
irreversible. motion of the particle will be de-
scribed in terms of a master equation which is
different from those put forward to date. The
new master equation is distinguished by the fact
that it obeys the symmetry of detailed balance
leading to a quantum analog of the reciprocity
relations, and the FDT is incorporated correct-
ly, too. More specific results will be obtained
for the damped harmonic oscillator. Finally,
the relation to previous approaches will be dis-
cussed.

A model for a damped quantum mechanical par-
ticle can be obtained by starting from a purely
dynamical model of a heavy particle of mass m
coupled to a reservoir of lighter particles of
mass m'. Upon eliminating the reservoir varia-
bles by means of the projection operator tech-
nique' one finds a closed subdynamics of the
heavy particle alone. The density matrix p(t) of
the particle with momentum p and position q
obeys a generalized master equation. We use an
approach' different from the usual ones because
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our relevant density matrix is of the local equi-
librium type and not a, factorizing density matrix.
This allows us to avoid the assumption that the
particle is not correlated with the reservoir
initially. Furthermore, the generalized master
equation can be shown to govern the time evolu-
tion of equilibrium correlations exactly.

When the coupling to the reservoir is of the
form g F, where F is a sum of coordinates of
reservoir particles multiplied by coupling con-
stants, the generalized master equation can be
evaluated further. Using the mass ratio, m'/m,
as a small parameter, we find in the limit m
»m' an approximate Markovian master equation
of the form

p (t ) = -iI p(t ) = -i (I-, + I-„)p(t ),
where the Liouville (super-) operator is the sum
of a reversible Liouvillian

I.,x =(1/R)[H, X ]; H =p'/2m+ V(q),

describing a particle of mass m moving in an
effective potential V(q), and a dissipative Liou-
villian

I.,X = (k, Tm/ia')(q, A[q, Z-'X]],
describing the influence of the bath. Here

8
yg,'=(Ptre a") ' 1 dne ~"Xe

is the Kubo transformation, P =1/k BT is the in-
verse reservoir temperature, and

Ax=(Ptre ") ' J duy(n)e "Xe

is a damping operator, where y(u) is given in
terms of the correlation function of the force F
exerted by the reservoir upon the Brownian par-
ticle

y(u) = (mk aT) ' J ds& Qs —ihn) I') .
It can easily be shown that in the high-tempera-
ture limit the master equation (1) reduces to the
standard Fokker-Planck equation for classical
Brownian motion with a damping constant given
by Kirkwood's formula.

We are interested here chiefly in the low-tem-
perature regime where the Brownian particle
must be treated quantum mechanically. Then,
the much lighter reservoir particles behave like
a system close to T = 0, and the damping opera-
tor takes the form

AX =ySX,

where Sx =-,'(PBX+Xpa) is the symmetrized

multiplication with the equilibrium state p~
= [tr exp(-PH)] 'exp(-PH), while

y=p '-f dny(n)

is a damping constant.
Some interesting properties of the new master

equation can easily be seen. Using the formula
[p8, q] =(ih/mk, T)ZP, we find

&q(t))=(1/ )&p(t)&,

& p(t)&= — -y&p(t)) .sv(t)
Bq t

Thus the mean values obey the same equations
that are met with classical Brownian motion.
This is as it should be in view of Ehrenfest's
theorem.

The symmetries of the process are more easily
recognized if the master equation (1) is written
in the form of an Onsager-type transport equa-
tion

p(t) = -R P(t) = -(v+D) p(t),
where

P(t) =kBTK '[P(t) —Ps]

is a thermodynamic force operator which drives
the system back to the equilibrium state p~, and
R is a transport (super-) operator. R consists
of a commutator

vx = -(i/a)[ p, x],
describing the reversible transport and a double
commutator

ax=(y /mn')[q, S[q,x]],
describing the irreversible transport.

The tra, nspose A of a (super-) operator A is
defined by tr(XAY') =tr(FA X). It may easily be
seen that

K =K V = —V D =D

so that V and D-are the antisymmetric and sym-
metric parts of R, respectively. The time-re-
versal transformation II is defined by IIq = q, IIp
= -p. Using 112 = 1 and II(i [X, I'J) = i [II Y', IIX]
we find

IIKII =K, IIVII = V IIDII =D

The last relations imply IIRII =R which is the
quantal version of the reciprocity relations.

Next we study the linear response to an external
perturbation H, (t ) which acts upon the particle.
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The perturbation changes not only the reversible
motion but the irreversible motion as well. This
follows from the fact that in the presence of a
time-independent perturbation the particle re-
laxes towards the steady state

p, =Z 'exp[-P(H+H, )] =ps-PKH, ,

where we have disregarded the nonlinear terms.
The thermodynamic force operator (4) is there-
fore replaced by

k, TK '[p(t) -p, +pKH, (t)]= p(t)+a, (t),
and we arrive at the master equation

p(t) =-z[ p(t)+a, (t)]=-iLp(t) -za, (t). (5)

From (5) we obtain

&p(t) =p(t) —ps= —J dsX(t-s)a, (s)

with the response operator

X(t) = 8(t) exp(-iLt)R.

Here 8(t) is the unit step function. In particular,
the response of the mean position (q(t)) to an
external force F(t), that is H, (t) = -qF(t), is
found to be

a(q(t))= J ds X„(t—s)F(s),
where the response functions are defined by
X At) =tr[XX(t)I'].

Besides the mean relaxation towards equilib-
rium, the Liouvillian L also governs the time
evolution of correlations of fluctuations about
equilibrium. The result is stated conveniently
in terms of the canonical correlation'

C, „(t)= tr[XG(t) I'],

where for t & 0

G(t) =exp(-iLt)K, G(-t) = G'(t) .
The relaxation of C»(t) to the frequently used
symmetr12;ed correlation S»gt) is expressed at
its clearest in terms of the associated spectral
functions'

tive part of the dynamic susceptibility. It is also
easily established that the correlation functions
satisfy the symmetry of detailed balance.

In the sequel we illustrate our results by con-
sidering a damped harmonic oscillator. Then

H =p /2m + —'ma 'q' = Ru (a ta + —'),
where a and a are defined as usual, and co, is
an effective frequency. Now the dissipative part
(8) of the Liouvillian reads

(9)

L„X= (k 8 Ty/2ihuo) [a +a, S[a +a, K 'X] ] .
(10)

To obtain the spectral decomposition of the Liou-
villian we perform a similarity transformation

UX = Q (k!I!) '(1 -expQ, ) "a~"a'Xat'a",
A, 1=0

where Q, =R~,/k BT. Operating with the trans-
formed Liouvillian ULU ' upon the dyadic pro-
duct lkxll of eigenstates Ik), Il) of the Hamil-
tonian (9) one finds that ULU ' leaves the sum
of quantum numbers N = k+ I invariant. Hence,
the eigenvalue problem iULU -'g=A. g separates
into finite-dimensional subproblems. For N = 0
we obtain A.

' = 0 and g
' =

I 0) (ol. With use of
(10) the corresponding eigenvector of -iL is
found to be the equilibrium density matrix pal
= U-'I o) (ol.

For N = I the eigenvectors of -i ULU ' are
linear combinations of Io)(ll and

I 1)(ol. The
eigenvalues are given by the classical expres-
sions

= —
~ y & ZCa)

~
(x)—

where ~'=cop 4y ~e have assumed that y
&2~,. The N = 1 subproblem determines the time
evolution of correlation functions of p and q and
the associated response functions completely.
For instance, the canonical q-q correlation func-
tion is found to be

S,g~) = —,'Qcot (-,'Q)C„g~), (8) (t) =, s ""' eoswt+ siotot) .k BT q]2
PPl (do 2(d

where Q=S~/kB T. Because of iL=k~TAK ',
Eqs. (6) and (7) give the FDT

x(t) = -u&(t) G(t) .
Using (8) and changing to frequency space, we
obtain the more familar form

coth(-,' Q) X» „"(cu)= (2m/tt) S» „(u)),

where X»"(&) = ai[X»(cu)-X„.»(~)] is the dissipa-

N &1 must only be considered if the evolution of
nonlinear functions of p and q is investigated.

For N = 2 the eigenvectors y' are linear com-
binations of l2)(01, I l)(ll, and IO)(2I, and

we are led to the eigenvalue problem of a 3&3
matrix. For small values of Q, =h~, /k~T the
eigenvalues can be calculated perturbatively.
Disregarding terms of the third order in 0, we
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obtain

«& &=-«[1+,—'(1+y /2&d')&& ], X, , ™&=-y& —2, &&' +2&~ 1 —6, (
——1)D'

These eigenvalues differ from those of the
Fokker-Planck operator for the classical damped
harmonic oscillator. However, for Q, -O the
correct classical eigenvalues are recovered.
The eigenvalues (11) determine, e.g. , the relaxa-
tion of the kinetic energy p'/2m.

The damped quantum oscillator has been treat-
ed frequently by others. For a survey we refer
to the articles by Haake' and Lax' and references
cited therein. It should be noted that in most of
the previous work an approximate Markovian de-
scription has been obtained by using the strength
of the coupling to the reservoir as a small pa-
rameter. Often, the rotating wave approxima-
tion has also been used. The resulting weak-
coupling master equation describes a. weakly
damped oscillator where y «e, and hy «k BT.
These conditions are satisfied, e.g. , for a quan-
tum optical oscillator.

In contrast, we have caxried out an adiabatic
approximation using the mass ratio as a small
parameter. Our master equation describes slow,
possibly overdamped systems, and systems at
low temperature. It can be used to study, e.g. ,
the influence of dissipation on macroscopic quan-
tum behavior. Finally we mention that for a
weakly damped harmonic oscillator the spectral

functions calculated from our master equation
match those derived from the weak-coupling
master equation near the resonance (~ ~ cu,).
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