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Dipolar Reorientation and Order-Disorder Behavior of Pure and Mixed Alkali Cyanides

Fritz Luty and Jaime Ortiz-Lopez '
Physics DePaxtment, Uniuexsity of Utah, Salt ~he City, Utah 84112

{Received 8 December 1982)

A simple empirical relation connects the critical temper'ature of the order-disorder
transition T, to the dipolar reorientation rate T {T) of CN molecules by the concept of
a critical reorientation rate 7, {T,}.This relation is derived from experimental data
on four pure alkali cyanides, the dipole-diluted {KBr)~ „.{KCN), system, and the mixed
alkali cyanides (KCN)& „.(NaCN)„and (RbCN)& „.(KCN)„. The observed disappearance of
the order-disorder transition at a certain x value occurs in all mixed systems, when the
spread of relaxation rates exceeds a particular value.

PACS numbers: 64.70.Kb, 77.40.+i, 77.80.-e

The study of the reorientation and ordering be-
havior of diatomic molecules in ionic sol.ids is a
field of intense current interest. CN molecular
ions have become phototypical. model. cases in
these studi. es, because they can be incorporated—in connection with alkali and halide ions—into
a variety of regular and irregular solid-state
structures. The case of a regular CN sublattice—the pure alkali cyanides —is characterized at
high temperatures by an orientational. ly disor-
dered structure, which transforms by a first-or-
der transition at T, into a state of parallel (ferro-
elastic) order. ' Dilution of the CN dipole con-
centration by halide substitution in systems
such as (KCN)„:(KBR), „shifts T, gradually to
lower temperatures, until at a critical CN con-
centration x, all measurable indications of a long-
range order disappear abruptly (observed first
in mixed KCl: KCN). ' It has been speculated that
systems with x&x, freeze under cooling into a
glasslike structure of dipolar disorder and elec-
tric and elastic spin-glass behavior. This spin-
glass aspect has attracted recentl. y a great deal
of experimental and theoretical interest in these
systems. ~' We have extended these studies for
the first time to a new cl.ass of disordered ma-
terials by producing continuous mixture between
different alkali cyanides such as (KCN), „:(NaCN)„.
In these mixed crystals, the CN sublattice is
essentially preserved, but becomes interspaced
(and strongly perturbed) by a disordered sub-
lattice of large and small cations.

In all the above-mentioned systems, we have
studied the order-disorder and reorientation be-
havior of CN ions with dielectric, Raman, calor-
ic, and optical techniques. From this extended
material, which will, be published in detail, we
present here selected results about two funda-
mental properties, (a) the dipolar reorientation
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FIG. 1. Arrhenius plot of the dipole reorientation rate
T of four pure alkali cyanides, measured with ITC,
dielectric, and NMR techniques {open squares, Ref. 6;
closed squares, Ref. 7).

rate as a function of temperature, 7 '(T), and

(b) the critical temperature T, of the ferroelast-
ic order-disorder phase transition [measured
by the discontinuity of both the dielectric con-
stant e(T) and the optical transmission of the
sample].

In Fig. I, we summarize for the Pure alkali
cyanides the measured electric dipole reorienta-
tion rate ~ ', plotted logarithmically against the
inverse temperature. The center part in the
10'-10'-sec ' range is data from our dielectric
measurements, in which 7 '(T) has been ob-
tained from the maxima of measured loss peaks
e "(~,T). (KCN and RbCN dat" of lower accura-
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cy—have been published previously by us."')
The loss peaks are only slightly broader than
ideal Debye curves; the bars in Fig. 1 indicate
the small spread of relaxation rates. Extensions
of these measurements to low temperatures with
ionic thermal conductivity (ITC) techniques in
our l.aboratory, "and to high temperatures with
NMR techniques' ' extend the covered frequency
range considerably. For each material the data
can be fitted over a frequency range of eleven de-
cades by a single Arrhenius expression yielding
activation energy and attempt frequency for the
dipol. e reorientation. An amazing empirical rela-
tion resul. ts from these data, as shown in Fig. 1.
The extrapolated Arrhenius plots intersect for
each material the critical temperature T, at ap-
proximately the same relaxation rate (shaded
area) within the experimental accuracy. Obvious-
ly each system changes under heating from the
elastically ordered to the disordered structure,
when the dipole relaxation rate reaches a critical
value of T, '=2x10" sec '.

Under dilution of the dipol. e concentration x
from 1-0 in the (KBr), „:(KCN)„system, the
critical temperature T, shifts continuously from
168 to - 80 K, until atx, all physical manifesta-
tions" of the order-disorder transition disappear
abruptly at x, = 0.60 (Fig. 2) Parallel measure-
ments of the dipolar reorientation with dielectric
loss techniques yield Arrhenius behavior with
activation energy and the attempt frequency val-

ues decreasing monotonically towards lower x."
Extrapolation of the determined Arrhenius ex-
pressions to the same critical reorientation rate,
v., '= 2x10" sec ', as determined in Fig. ly
yields by our empirical rel. ation "calculated" T,
val.ues, as indicated by open circles in Fig. 2.
They fit amazingly wel. l the measured T, (x) be-
havior; however, they continue to "predict" T,
values below x, where no ordering is observed
any more.

Kith the same techniques and approach we
have studied the new mixed systems (RbCN), „
:(KCN)„and (KCN), „:(NaCN)„. The resul. ts
relevant to this paper are summarized in Fig. 3.
In both mixtures a shift of T, to l.ow tempera-
tures with increasing cationic disorder is ob-
served. For the (RbCN), , :(KCN)„system this
shift is weaker, and a transition into an ordered
state is observed under cooling throughout the
whoi. e mixture. For the (KCN), „:(NaCN)„ the
shift of T, to low temperatures is extremely
strong, and a transition to an elastical. l.y ordered
state is observed only close to the pure com-
pounds at 0 (x& 0.1 and 0.85& x (1. Evidently,
the elastic dipole interaction between CN ions
becomes very effectivel. y overpowered by the
competing elastic interaction due to the inter-
spaced disordered sublattice of large and small
cations. Therefore, from a certain critical con-
centration of cationic disorder x„ the molecular
system can no longer achieve a state of col.lective
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FIG. 2. Critical temperature T, of ferroelastic phase
transition in (KBr)& „.(KCN)„, measured with dielectric
and optical techniques and calculated from reorienta-
tion rate w ~.
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Fla. 3. Critical temperature Tc of ferroelastic phase
transition for (a) (RbCN)g „.(KCN)„and (b) (KCN)~ „
:(NaCN)„, measured with dielectric and optical tech-
niques and calculated from dipole reorientation rate
T 1.
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plotted as open circles in Fig. 3. The agreement
with the measured T, (x) behavior of the (BbCN), „
:(KCN)„system is perfect. For the (KCN), „
:(NaCN)„case, the strong temperature shift T,
with increasing disorder is very well represented;
however, we obtain (as in Fig. 2) "predicted" T,
values also in the regime of x where no transi-
tion is actually observed. It should be pointed
out that the T, variation [Eq. (1)] is produced
for the systems in Figs. 1 and 2 mostly by varia-
tion in U; for the systems in Fig. 3, however, it
is produced mostly by a strong ~, '(x) variation. "

Our empirical relation between dipole reorien-
tation and ordering temperature should become
questionable when the dipole reorientation rate be-
comes very nonuniform as it is indeed observed
in al. l the mixed systems under increasing dis-
order: As Fig. 4 illustrates, the half-width of
the dielectric loss d'(&u) increases from the

Debye width (™oneorder of magnitude) for the

pure crystals to very high values (up to eleven
orders of magnitude), a behavior characteristic
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FIG. 4. Dielectric loss width logarithmic) for three
mixed cyanide systems as a function of mixture ratio

long-range order, but will gradually freeze
under cooling into an orientational. ly disordered
state. For all mixed systems, displayed in Fig.
3, we have determined with dielectric loss meas-
urements e "(cu, T), the Arrhenius reorientation
rate r '(T), and determined the mean activation
energies U(x) and attempt frequencies ~, '(x).
Extrapolation to our critical reorientation rate
v, ' yields again predicted T, values according to

U(x)
lm, '(x) —lm, '

of spin-glasses. ~n empirical criterion for the
necessary cutoff of the phase transitions at x, is
supplied by the data in Fig. 4, if we assume a
critical width for the dielectric loss of about six
orders of magnitude. For relaxation distribu-
tion width below this critical value, Eq. (1) can
be applied and an order-disorder transition is
present at T, ; for widths above this value, no

phase transition is observed. While (BbCN), „
:(KCN)„ lies barely below this critical line and

shows phase transitions over the whole mixture

range, the (KBr), „:(KCN)„and (KCN), „:(NaCN)„
systems cross the critical I.ine (within the shaded
range of accuracy) at the observed x, values,
dividing the mixture into a regime of coll.ective
ordering and orientational. disorder, as observed.

The question for the physical origin and signifi-
cance of the two empirical "critical" relations
remains essentially unanswered at this stage.
The constancy of 7, ' under host-material varia-
tion, observed in seven pure and mixed systems
with widely varying physical properties, suggests
a relation of ~, ' to a CN molecular property.
We note that its value 7, '=2x10' sec ' lies
very close to the rotational constant 8 = 5/(4')
(I is the moment of inertia) of the CN mol. ecule.
(The anal. ysis of the hindered rotational. motion
of CN defects in alkali halides with the Devon-
shire model. "'~ yielded an effective value of B
=3.0x10" sec ', somewhat lower than the free-
molecule value. ) This close coincidence of ~, '
and B indicates —purely phenomenologically —that
the order-disorder transition occurs when the
lifetime broadening (due to rapid reorientation)
of the CN orientational. states is comparable to
the lowest-energy splitting of the quantized CN
rotor.

In summary, we have shown that a provocative-
ly simple two-parameter model can describe the
complex order-disorder T, (x) properties of CN
mol. ecules in a large variety of regular and irreg-
ular lattices with amazing precision. It remains
as a challenging task to the theory to find a
foundation and interpretation for this empirical
model, and to the experiment, to test its validity
in other materials with molecular reorientation
and order-disorder properties.
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