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Nonlinear Stochastic Processes Driven by Colored Noise: Application to Dye-Laser Statistics

S. N. Dixit and Paramdeep S. Sahni
Corporate Research-Science Laboratories, Exxon Research and Engineering Company,

Linden, Ne'er Jersey 07036
(Received 7 February 1983)

The role of multiplicative colored noise on the photon statistics of the dye-laser output
is investigated. This model explains consistently the recent experimental results by
Short, Mandel, and Roy.
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The physics of macroscopic systems can often
be described in terms of a few collective variables
whose equations of motion are obtained by the
elimination of microscopic variables and are, in
general, highly nonlinear. If the system is in
stable equilibrium, the statistical nature of the
processes arising due to the microscopic dynam-
ics can be neglected. However, in the case where
the system approaches the limit of stability, the
fluctuations due to microscopic variables play a
very crucial role in governing the evolution of
the system and hence must be incorporated into
the equation of motion for macroscopic variables.
The fundamental importance of fluctuations has
been realized in a large number of systems, e.g. ,
the laser, autocatalytic reactions, hydrodynamic
and current instabilities, and equilibrium phase
transitions for which the deterministic macro-
scopic description is found to be inadequate,
especially near the threshold regime.

There is currently intense activity in analyzing
the effect of fluctuations on the dynamics of non-
linear processes. ' These fluctuations, appearing
as additive and/or multiplicative' noise terms in
the equations of motion, are usually modeled at
5-correlated Gaussian processes (or white noise).
This assumption, although convenient for mathe-
matical analysis, is somewhat unrealistic as the
fluctuations arising due to the microscopic dynam-
ics would have a finite (nonzero) correlation
time. (Such fluctuations are commonly referred
to as colored noise. ) Only in certain regions of
parameter space, where all other relevent times
in the problem are much longer than the correla-
tion time of the fluctuations, would the white-
noise approximation be valid while in other re-
gions discrepancies between white-noise theory
and experiment would become noticeably large.

The problem of photon statistics of the dye-
laser output falls into this category as the equa-
tion of motion for the electric field e(t) is non-
linear and the colored noise is important. Re-

cent experiments'4 have demonstrated some very
interesting statistical properties of e(t); e.g. ,
the relative intensity fluctuations, defined as
((LI)') /(I)', tend to increase indefinitely as the
laser is weakly excited ((I)-0). Such a behavior,
inexplicable in terms of additive noise, is sus-
pected to arise due to fluctuations in the pump pa-
rameter that appear multiplicatively in the equa-
tion of motion for e(t). The theory proposed by
Graham, Ho'hnerbach, and Schenzle, ' where the
noise was modeled as a Gaussian 6-correlated
(white-noise) process, although successful in ex-
plaining some of the experimental results of Ref.
4, fails to explain results in another parameter
regime as has been demonstrated by Short, Man-
del, and Roy4 in a recent publication.

It is the purpose of this Letter to explain the
experimental results of Ref. 4 consistently by
developing a theory that allows for the finite cor-
relation time of the fluctuations (colored noise)
in the pump parameters. The evolution of the
dye-laser output is simulated numerically, as
analytical solutions to this problem are difficult
to obtain at this time.

We begin with the well-known equation of motion
for the output of the single-mode dye laser op-
erating in resonance, '

de(t)/dt = [a,(t) -A~ ~E(t) ~'] E(t)y

where e(t) (complex) is the field amplitude and

A, provides for stabilization above threshold.
The pump parameter a, (t) [=a»+ $(t)] is consid-
ered to be fluctuating around its (real) mean val-
ue a„with complex g(t) [= $,(t)+ i $,(t)] denoting
the fluctuations. Unlike in Ref. 5, where $,(t)
and $,(t) were modeled as white noise, we as-
sume these to be described by Ornstein-Uhlen-
beck processes. $, (t) and t;(t) then obey the equa-
tions

d$, /df = —y~)+ yE„(t), a= 1, 2,

where I",(t) are the Gaussian white-noise fluctu-
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dE /d ~ = o' [I —IE I ]E + pE,

d p/d 7.= —I' y+ I"g,

(5)

(6)

where real and imaginary parts of q(q, + i g, ) sat-
isfy

(q,. (T)q, (~')) = 5„5(T-~').

The average intensity of the dye-laser output is
given by

&I& = (I~(f) I'& =~/q& IE(f) I'&=~/q&T(f)& (8a)

while the intensity correlation function is ex-
pressed as

ations satisfying

&E.(~)) =0,

(E;(f)E,(f')& = 5;, Q„6(f-f').
Equations (2) and (3) imply that

«*(f)l(~')& = Q„~
thereby introducing a finite correlation time (y ')
for the pump parameter fluctuations. In the limit
y- ~, our model reduces to that of Graham,
Hohnerbach, and Schenzle and that of Schenzle
and Brand. '

Equations (1)-(3)are normalized' by defining
7 = Q„t, ~(t) = (a,o/A, )' 'E(t), q, (f) = 5, (f)/Q„,
g,. (t) = E,(f)/Q „, a = a„/Q „, q =A, /Q „, and I"
= y/Q». The normalized equations are then writ-
ten as

rectly reproduced up to 4. Results presented in
this paper have been obtained by averaging over
20 000 time steps of duration ~ = 0.005 and over
350 different configurations. The maximum er-
ror bar in our numerical simulation is estimated
to be about 10'.

A comparison of the results of our simulation
for A(T) with the experimental results of Short,
Mandel, and Boy4 is made in Figs. 1 through 3
where the latter have been plotted on the normal-
ized time scale (7= Q»t) with Q» =0.2 (@sec) '.
A constant background has been subtracted in fit-
ting the data as was done in Befs. 4 and 5. Note
that A(T) depends only on o. and I'. Unlike in the
white-noise case (I' —~), where n is determined
using A(0) = I/n, complete knowledge of A(T) is
required to determine n and F in the colored-
noise case. Moreover, fluctuations of the pump
parameter are characterized by Q» and I' and
would be expected to remain constant at a fixed
operating wavelength of the laser. As the operat-
ing wavelength was fixed in the experiment of
Short, Mandel, and Roy, 4 Q» and I' would be ex-
pected to remain fixed for the experimental data
plotted in Figs. (2)-(4) of Ref. 4 (hereafter re-
ferrred to as cases I, II, and III, respectively).
On the other hand, a, characterizing the proxim-
ity of the excitation to the threshold, would be dif-
ferent in the three cases. Therefore, we seek to
determine a single value of F and three values of
o (one for each case) to fit the experimental data.

(~z(t, )~z(t, + t))
(~(f, ))'

(aT(7;)zT(7;+ ~))
(1(~,)) ' (8b)

2.5
I

I

It

Thus A(w) depends only on a and I' and q simply
scales the absolute value of the intensity.

The solution of Eqs. (5) and (6) is simulated by
extending the method of Sancho et gl. ' to the case
of complex variables. The equations used in this
simulation, to order 6, are

E(T+ a) 0.5—

=E(~)+ II —lEI'1jE~&+Eq~+-', Ev'~',

y, (T+ a) = cp„(~) —I'aq, (7)+ I a'~'z„
g=l, 2,

(9)

(10)
0 I i I s I

2 3

ice O~~~~ g f

I s I

4 5 6

where Z, and Z, are Gaussian random variables
of zero mean and unit variance and are indepen-
dent of each other. The last term in (9) is in-
cluded so that the white-noise results are cor-

FIG. 1. A, (T) vs 7 for case I. Solid line, experimental
data from Fig. 2 of Ref. 4; dotted line, white-noise
theory with 0. = 0.52; dashed line, white-noise theory
with e = 0.4; and dots, colored-noise theory with n = 0.4
and j. = 5.
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FIG. 2. A, (7-) vs T for case II. Solid line, experimen-
tal data from Fig. 3 of Hef. 4; dotted line, white-noise
theory with n = 1.05; dashed line, white-noise theory
with o. = 0.82; and dots, colored-noise theory with n
= 0.82 and I'=5.

FIG. 3. A, (T) vs z for case III. Solid line, experi-
mental data from Fig. 4 of Ref. 4; dotted line, white-
noise theory with n = 1.84; dashed line, white-noise
theory with n = 1.3; and dots, colored-noise theory
with o. = 1.3 and I = 5.

Best fits are obtained for I = 5 for all three cases
and o. =0.4, 0.82, and 1.3 for cases I, II, and III,
respectively. Within the accuracy of our simula-
tions, the agreement between theory (dots) and
experiment (solid lines) is excellent.

In Figs. 1, 2, and 3 we have also plotted, re-
spectively, the white-noise-theory results
(dashed curves) for n =0,4, 0.82, and 1.3. While
these results agree with the results of our simu-
lation for 7. beyond 0.5 or so, there is consider-
able disagreement between the two results close
to the origin. This is understandable with the
realization that for 7.~1 the correlations in the
pump fluctuations are vanishingly small (since
I r» 1 for I' = 5) and hence white-noise approxi-
mation should be valid in this region. For times
such that I"7.~1, finite correlation time of the
fluctuations gives rise to significant deviations
from the white-noise theory. It is seen that de-
creasing I' reduces A(0) for a fixed a. This is
due to the fact that the rate of random on-off
switching of the laser is slower in the presence
of colored noise as compared with the rate in the
presence of white noise. This, in turn, reduces
the fluctuations in the intensity output of the
laser, thereby reducing &(0).

The implication of the above interpretation is
the followi;ng: For. T' & o, the tail part of the cor-
relation function [A(~) for v satisfying I'v. » 1] is

identical to that obtained from the white-noise
theory How. ever, A(T) for T satisfying I'7. «1
and o. ~ «1 is sensitive to the correlation time
of the fluctuations. Since A(0) for finite I' is
smaller than that for the white noise, a determi-
nation of a using the value of A(0) and the white-
noise theory [o. = I/A(0)] will yield a higher value
of u. Furthermore, A(T) calculated using the
white-noise theory with this value of a shows
considerable disagreement with the experimental
results as seen in Figs. 2 and 3 (dotted lines and
solid lines).

For case I, the white-noise theory of Graham,
Hohnerbach, and Sehenzle' also agrees with the
experimental results. It is well known that close
to threshold (small u}, fluctuations of the light
field slow down because of the critical slowing
down process. In that case, the pump fluctuations
(characterized by the correlation time 1" '}are
much faster than the growth rate of the field (de-
termined by n) and hence can be modeled as
white noise. With increasing n the two time
scales become comparable and hence the white-
noise approximation breaks down. The success
of the present model in explaining the observed
features of A(7.) even for large n justifies its ap-
propriateness in describing the fluctuations. oth-
er features of this model will be examined in a
future publication. "
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In conclusion, through numerical simulation of
the dye-laser output in the presence of pump fluc-
tuations characterized by a colored noise, we
have been able to explain consistently the experi-
mental results of Short, Mandel, and Roy. 4 Along
with the usefulness of the numerical simulation,
the results of the present paper also demonstrate
the importance of the correlation time of the fluc-
tuations on the dynamics of nonlinear stochastic
processes. Effects such as the ones discussed
here should be of importance in other nonlinear
processes, for example, optical bistability, and
are currently under investigation.

The authors wish to thank Professor Rajarshi
Roy for many discussions and for providing us
the detailed experimental data.
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