
+oI-UME 50, NUMBER 17 PHYSICAL REVIEW LETTERS 25 APRIjL 198)
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One-particle, one-hole and two-particle, two-hole level densities are calculated in
the local-density, i.e. , Thomas-Fermi, approach. For the harmonic oscillator this
leads to ana1ytical expressions which are in excellent agreement with the exact quantum
results.

PACS numbers: 21.10.Ma

In a recent work, Schuck, Ghosh, and Hasse'
have shown how to calculate in Thomas-Fermi
approximation the average part of particle-hole
(p-h) multipole transition strengths. We here ap-
ply the same technique for the evaluation of aver-
age lp-lh and 2p-2h level densities. These quan-
tities obviously are of interest as, for example,
in precompound reactions or in the study of the
spreading width of giant resonances, ' to name
only a few. On the other hand, it seems appropri-
ate to evaluate those multiparticle-multihole lev-
el densities in a statistical model because of the
extremely high density of states for excitation
energies ~ h~, (a typical shell spacing). The in-
teresting energy range for level densities, how-
ever, lies mainly about the Fermi energy. Statis-
tical models for the evaluation of level densities,
of course, have been applied long ago' but to our
knowledge, no attempts have been made to cal-
culate these quantities in a systematic expansion
in A [extended Thomas-Fermi (ETF) approach].
This approach has obvious advantages since it
takes into account the specific shapes of individu-
al potentials and yields for each potential (e.g. ,
harmonic oscillator, Woods-Saxon, etc. ) in a

well defined way the average part of the corre-
sponding exact quantity. This has been demon-
strated extensively in the past for quantities such
as ground-state energies, ' moments of inertia, '
pairing energies, ' etc. In most of these eases, a
corresponding Strutinsky calculation exists and
perfect agreement between the semiclassical and
the Strutinsky approach has always been found. '
Since some of these quantities involve already
1p-1h states around the Fermi surface (e.g. , mo-
ment of inertia) it seems natural to apply the
ETF approach also to multiparticle, multihole
states, and to surmise that the results are the
same as would have been obtained fro m a Strutin-
sky calculation.

Indeed, in a numerical example for the three-
dimensional harmonic oscillator we show below
that our semiclassical level densities pass very
nicely through the average of the exact ones and
we conjecture from the experience one has ob-
tained in the meanwhile with the ETF approach
that this will be the same for more general po-
tentials of the Woods-Saxon type.

Our starting points are the definitions for the
single-particle, lp-lh, and 2p-2h level densities:

g,„(z)=g„r(z- ~„),

a„,~(&) =Z, , ~~%- ~, + ~d,

g, g(&) = Z &(&- &p, —&p, + &a, + ~h, )~

p&&p2, hl&h

(la)

(1b)

(1c)

where the e,. are the eigenvalues of the single-particle Hamiltonian H (spherical harmonic oscillator
in our case) and the sums go over particles and holes [note that in (lc) the Pauli principle is obeyed;
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the well-known case of the single-particle level density' is only treated for the sake of completeness].
We now rewrite (1) in a representation-independent way:

g„(E)=Tr (5(E- H)),

g„,„(E)= Tr, Tr, Ie(~, -a, ) e(a, —~,)5(E-H, +a, )),
g, ,h(E) = Tr, Tr, Tr, Tr, (6(e ~

—H, ) 6(e F
- H, ) 6(H, —e „)6(B, —e „)5(E —H, -B,+ B,+ B,))

—Tr, Tr, Tr, Ie(e „—H, )6(H, —e„)6(H2 —e„)5(E—H, —B,+2B,))
—Tr, Tr, Tr, (6( e „-H, ) 6( e F

—B,) 6(H, —e F) 5(E —2H, + B,+ Hs))

+ Tr, Tr, (6(e F
- H, ) 6(H, —e ~) 5(E —2H, + 2B,)),

(2a)

(2b)

(2c)

where 6(x) stands for the unit step function. It is straightforward to proceed from (2) to the Thomas-
Fermi approximation, i.e., replacing the operators H,. by their classical counterparts,

H, '=p,. '/2m. +V(r, ),

and the traces by integrations over phase space,

Tr, -n,. J (2nh) 'd'r, . d'p, , (4)

where n,. denotes the spin-isospin degeneracy.
For the special case of the spherical harmonic oscillator V= m+0'6/2, we can perform the integra-

tion analytically and we obtain the results (without h corrections and with spin but without isospin fac-
tors)

8(00gzp (E) = E,

(e —A.)', z(e —A.) (e —z)'
2 SQ 8 2 10

(5a)

(5b)

TFE e A. E 8)L E 16' 9A. E 4c e
+ -+ —A, E- 4

og2Pah ( 18 3I 7t I] t 4! Sf 4 5I

(6 —A)' A.'(6 —A) 2A.'(E —A)' 2A,'(E —X)' 4A,'(E' —A)' 8A(E —A)' 8(E —I)'
5! 6! 7! 9! 10! 11l

x'(~ - z) x'(~ - x)' x(e —x)' (e —x)'
4t 5t 2)&6I '7f

(e —2A) A'(e —2A) 4A. (e —2A)' 8)P(e —2A)' SA(e —2A)' 4(e —2A)'

A.'(e —2A.) X'(e —2A)' X' A(e —2A.) (e —2A.)'
Sx4! 2x5! Sx3! Sx4! 16x5!

Here, e=E/k~„and A= e ~/h~, follows from number conservation in lowest order of 5'.

For the harmonic oscillator, one can also evaluate the exact quantum level densities from combi-
natorics:

(6)

@~,g, ~o (E) = g 5(e- n- z)n(n+1),
n =&

(7a)

1
e(u.g, P,„(E)=2 g 5(e-n)

n =1 I —i —A.',
+1~m~ A, +n

m-i =n

i (i+ 1)m(m+ 1), (7b)

h w, g,~,ho (E) = —Q 5(e- n)
n =a

i(~'+1)( -a, , )m(m &1)( - - 5,).
+1 —m, A X +n
m+I -i -i =n

(7c)

1251



VOLUME 50) NUMBER 17 P HYSIt" AI. REVIEW I.KTTERS 25 APRiL 198$

Here, the Fermi energy follows from

+ 2y" + 2g' = 2iy. (8)

N, p
'(E)=ze'-ve. (10)

Here, the second term lowers the zero-order re-
sult by a very small amount, just enough to bring
it precisely to the average. The level densities
are displayed in Fig. 2, where the dots represent
the height of rectangles with unit base whose
areas are equal to the weights of the correspond-
ing 5 peaks. We thus achieve a gross averaging
of the exact level density which is to be compared
with our semiclassical result.

We would like to point out that besides the ex-

The sums (7) can be performed analytically but
the expressions become too lengthy to be shown
here.

In order to compare our semiclassical expres-
sions which represent average quantities to the
exact quantum mechanical ones which are a suc-
cession of 5 peaks, we display in Fig. 1 for the
low-energy part the integrated quantities

Nap, &ah, apah(E) Jo dE glp, lpzh, epoch(E )i (

i.e., the corresponding number of states. From
this figure one sees how precisely the Thomas-
Fermi result passes through the average of the
steplike exact functions. In looking, however,
very closely, one sees that our results are slight-
ly above average, a feature which can certainly
be cured in evaluating the k' correction to the
above result; this is straightforward, but tedious
to do. The effect can be studied nicely in the well-
known and very simple case of the one-particle
level density or the number of particles which
reads, with A' corrections, '

cellent overall agreement of the semiclassical
results with the exact ones even such fine details
as the small number of 2p-2h states for 0 (E/
h~, s2 (Fig. 1) and the discontinuity of the deriv-
atives of the level densities around the Fermi
level are reproduced semiclassically.

One also observes that for large energies the
Thomas-Fermi level densities are asymptotical-
ly exact. For excitation energies high above the
Fermi level our harmonic oscillator model is,
of course, inadequate and Fig. 2 in this range
only serves for comparison of our Thomas-Fermi
approach with the exact level densities. For finite
potentials the energy range which corresponds to
excitations into the continuum has to be treated
with extra care. ' Finally we note that g»» of
Eq. (5),

g, p, h (E)=go'E(1+ E'/30m p'), E (e„, (11)

where g, = e p'/(S&u, )' = 3N/e p is the single-particle
level density at the Fermi energy, represents an
improved version of Ericson's formula, ' now val-
id for all energies below the Fermi energy.

For a Woods-Saxon potential, the integrations
involved in (2) and (4) have to be performed nu-
merically but as mentioned above there are strong
reasons to believe that the results compare as
favorably with the exact ones as in the harmonic-
oscillator case. This belief stems from other
studies4 within the ETF formalism where the
accuracy of the results is independent of the po-
tential. We hope to present calculations with a
Woods-Saxon potential together with a more
elaborate version of the paper elsewhere.
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FIG. 1. Single-particle; one-particle, one-hole; and
two-particle, two-hole numbers of states in the Thom-
as-Fermi approximation and calculated quantum me-
chanically.
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FIG. 2. Same as Fig. 1 but level densities. The dots
represent the heights of rectangles with unit base whose
areas are equal to the weights of the corresponding 5
peaks.
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For 2p-2h states which enter the width of giant
resonances we have to project onto good angular
momentum. Also this can be done successfully
within the Thomas-Fermi approach as we have
demonstrated in our preceding paper' on the
quadrupole p-h transition strength.

In conclusion, we have demonstrated here how

multiparticle, multihole level densities can be
calculated very accurately within the Thomas-
Fermi approach. In spite of its great simplicity
we are not aware of any earlier attempts in this
direction and we thus think that our novel method
may be quite promising for problems where these
level densities are of importance. As a first ap-
plication we are presently trying to evaluate the
spreading width of giant resonances (2p-2h states)'
within this formalism. But other quantities such
as, for example, the imaginary part of the nu-
cleon optical potential (2p-1h states) are certain-
ly equally interesting.
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