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Random Walk in a Random Environment and 1/f Noise
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The 1/f noise is a very common phenomenon
which shows up in many physical systems of quite
different kinds. ' However, it is not simple to
produce theoretical models which display such a
behavior. Indeed when we study the power spec-
trum of a variable x(t),

S(f) = lim T '
I J, dte' ' x(t) I', (1)

if x(t) is given by a Brownian motion we find for
S(f) a 1/f'behavior, and if x(t) satisfies simple
deterministic equations, the power spectrum is
not as singular as 1/f when f goes to zero.

In this Letter we want to point out a quite simple
model which exhibits a 1/f power spectrum. We
will use as a starting point the one-dimensional
random walk in random environment' (random

ra.ndom walk).
The model which has already been studied in a

different context" is defined by the following
equation:

x = F(x) + q(x, t ),
where F(x) and gx, t) are independent random
variables (which we may assume to be Gaussian)
with covariance

&Z(x) F(y)) = d(x —y),

&r/x, t)q(y, t'))=25(x -y)6(t —t'),

&F(x)&= &q(x, t)&=0.

In other words we have a random walk with a
drift F(x) which is a randomly distributed, time-

1223



VoLUME 50, NUMBER 17 PHYSICAL REVIEW LETTERS 25 APRIL 198$

independent stochastic variable.
This model is very singular, and it is conven-

ient to consider instead the lattice-regularized
version of (2) and (3). Both the position x(t) and
the time t become integer variables; for each
space point i we preassign a probability n,.~ of
moving right and a probability v,. of moving left,
such that v,.~ +v,."=1.

Two extreme cases can be considered: (a) v,."
= —„' (b) &;"and »; are random variables

which may only assume the values 0 and 1 with
probability —,'. Case (a) is the usual random walk,
where x'(t) —t for large t. What happens in case
(b) depends on the particular realization of the &

probabilities: It is evident that, with probability
one, the», - will be such that x(t) remains bounded
uniformly in t (i.e., x(t) cannot go outside oi' a,

given interval]. The corresponding power spec-
trum is 1/f' in case (a), and in ease (b) will not
be divergent when f goes to zero.

It is remarkable that in the intermediate case
[ v, and w, having a symmetric distribution dif-
ferent from (a) and (b), e.g. , a flat distribution
on the interval (0, 1)] it has been proved by
Sinai2 that

for t- ~, with probability 1.
Here we argue that in this case the power spec-

trum behaves as

ln'f /f
for small f. The argument runs as follows: The
random force acting at x derives from a random
potential V such that potential differences scale
like A,

' ' when distances are multiplied by ~. The
dynamics is dominated by the long time it takes
to cross "mountains" (moutain passes if we were
in several dimensions). When the particle is con-
fined in a valley it has equilibrium distribution
-exp(-V). When distances are multiplied by A.,
the corresponding transition probabilities are
thus changed from c to c to the power A.

' '
(roughly). Correspondingly, the times are
changed from T to T to the power A.

' '. Converse-
ly, multiplication of the time by T (for large
times) corresponds to a. multiplication of distances
by a factor -(In~)', i.e., we recover Sinai's re-
sult. If this scaling relation is inserted in (1), a
simple calculation yields S(f) —

~ lnf ~'/f asymp-
totically for small f.

A numerical experiment done with 30000 dif-
ferent walks 4096 steps long and 100 walks 2"
steps long (each of them in a different random
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environment —for a detailed discussion see
Marinari et al. ') gives results that are compatible
with such a behavior (although, because of the
finite T we have to use, power corrections of the
form f " with A &0.4 cannot be excluded).

What happens in higher dimensions? If the drift
E is the gradient of a random potential V with a
long-range correlation,

with n &0, a generalization of the same argument~
tells us that the power spectrum will have the
form

(7)

(To be more precise, we make a. scaling assump-
tion on the ensemble of the potential V; n is the
scaling exponent equal to —,

' in Sinai's case. ) If
our random walk corresponds to thermal motion,
the coefficient C in (7) will have T' dependence
on the absolute temperature.

An other interesting possibility is when F is
not a gradient, but has short-range correlations.
We investigated what happens on a two-dimen-
sional square lattice if one chooses for the tran-
sition probabilities P,~" j (~=1, . . . , 4) for going
from the point i to the nearest neighbor in the
direction ~

(8)

with

Z, (K) = g (a, '"')»,
r =1

where the a; " ' are uniformly distributed in (0, 1).
Here also for K=O we recover the standard

random walk, and in the limit K- ~ we get a
deterministic process in which x(t) is bounded.
In this model we have studied numerically, using
of the order of 10' walks of 2"-2" steps for
each K, the behavior of x'(t) for large t as a
function of K. For small values of K (K=1, 2) we

we find that our data are well described by the
behavior x'(t ) - t. For higher K (i.e., K = 7) the
data are better described by x'(t) - t", where a
best fit for the power a is given by a=0.30+0.09.
For still higher values of K a behavior (x'(t))' '
-ln'g seems to be preferable: We should remark
that the length of our walks is not large enough
to resolve the difference between a small power
and a logarithmic behavior, nor to distinguish
between a preasymptotic regime and a truly
asymptotic one. Analytic tools to investigate
this model would be welcome.
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It is clear that it is not easy to construct a
microscopic model of a conductor in order to
implement the mechanism that we discussed: In-
deed already in a two-dimensional film with ran-
dom structures a qualitative understanding of the
conductivity itself, taking account of quantum
localization effects, electron-electron interac-
tions, and temperature effects, is not available. '

It is, however, satisfactory that we have suc-
ceeded to build up a simple model which displays
the needed qualitative features.
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