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The authors have diagonalized numerically the Hamiltonian of a two-dimensional system
of up to six interacting electrons, in the lowest Landau level, in a rectangular box with
periodic" boundary conditions. They find that the ground state has a pair correlation

function quite different from that of a signer crystal, and its energy is significantly
lower. They also find some indications of a downward cusp in the energy at 3 filling.
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The origin of the quantized Hall effect of a two-
dimensional electron system in a strong magnetic
field' is now well understood. ' ' However, there
has been no satisfactory explanation for the anom-
a1ous quantized Hall effect, which is observed in
AloaAs-GaAs heterojunctions. " In this experi-
ment the Hall conductivity 0„, shows plateaus at
o„, =&e'/h and &e'/h. Since the AlGaAs-GaAs
heterojunction has a very high electron mobility,
it is natural to suspect that the effect comes from
the Coulomb interaction between electrons. How-
ever, an attempt to explain the effect by the form-
ation of a Wigner-crystal-like charge-density-
wave (CDW) state was not successful. ' It was
found that & or & filling of the lowest Landau level
did not lead to any observable singularity in the
energy, and it was also shown that in the crystal-
line state, 0„, takes as values only integer multi-
ples of the quantum e'/h, if the crystal is pinned
by impurities. '" We need a new state which has

~

lower energy than the crystal to explain the anom-
alous quantized Hall effect.

In the present paper, we investigate numerical-
ly the eigenstates of an electron system, in the
first Landau level, in a rectangular cell with
"periodic" boundary conditions, and up to six
particles. We find that the ground state has sig-
nificantly lower energy than that of a Hartree-
Fock Wigner crystal, and that the pair correlation
function g(r) looks quite different from that of a
crystal. States resembling the Wigner crystal
with regards to energy and g(r) appear at higher
energy.

We take the coordinate system such that the
boundary of the cell is given by x = 0, x = a, y = 0,
y = b, with the vector potential A = (0, xB) Our.
boundary condition requires that ab/2rrP be an in-
teger m, where 27rP =bc/eB. Then there are m
different single-electron states in the cell, whose
wave functions are given by

. (X, + ha)y (X, + ha —x)'

Here integer j, 1 &j &rn, , specifies the state, and X, =2nl j/b is the center coordinate of the cyclotron
motion.

The electrons in the cell interact with each other and with the uniform positive background charge by
the Coulomb interaction. Because of the boundary condition, the Coulomb potential in real space is
given by

V(r)=g, g, e'/e~r+sax+tby~,

where e is the dielectric constant, and x and y are the unit vectors along the x and y axes, respective-
ly. Since we consider only the lowest Landau level, the Hamiltonian consists entirely of the Coulomb
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interaction term:

g,-sa„ ta, +Q, ,g, ,g,@,,A... ,.. a, ta, , ta, ,a...
where z, is the destruction operator for the jth state. The single-electron part comes from the inter-
action between an electron and its image, so that S is a known constant related to the Coulomb energy
of the classical rectangular Wigner crystal. "

The two-electron part is given by

=z f d'r, f d'y, y, *(r,)y, *(r,) V(r, -r2)y, (r, )p, (r, )

P
Q~ ~" ia Qy 2~tjb ~i 4~t ~q

'
2 @pes t

The Kronecker 5 with prime means that the equa-
tion is defined modulo m, and the summation over
q excludes @=0.

We specify the number n of electrons in our
cell, so the filling factor v is given by n/m. The
Hamiltonian of the system has particle-hole sym-
metry, after a constant term, which equals —(m/
6)' 'v'(8'/el) in the infinite-n limit, has been re-
moved. Our calculations are done for v (0.5 and
extended to v)0. 5 using this symmetry.

The basis n-electron wave function is specified
by the occupation of the single-electron state:
(j„j„.. . , j„). The total number of the basis
is given by („). However, the Hamiltonian H con-
serves the total momentum in the y direction, J
=j,+j,+. . .j„(modm). So the number of the basis
for fixed m, n, and J'is approximately m '(„),
which gives the dimension of the Hamiltonian ma-
trix.

Two values of Jwhich differ by a multiple of n
are equivalent, since (j„j„.. . , j„)and (j, +1,
j,+ 1, . . . , j„+1) differ only by translation in the
x direction. Hence when m and n have no com-
mon factor, the energy spectrum of the Hamilton-
ian is independent of J and every eigenenergy is
at least vs-fold degenerate. On the other hand,
when m and n have a common factor, the states
»e less degenerate and the ground state is real-
ized only at certain choices of J. For exampLe,
at v=~ and n= 4, the threefold-degenerate ground
state is found at J =2, 6, 10.

Since we are interested in the ground states
near v=T, the diagonalization was done numeri-
cally for n = 4, 5, and 6, a.nd 0.25 &n/m = v &0.5

except for n = 6 where we calculate only up to m
=20 or v=0. 3. Figure 1 shows the ground-state
energy of n-electron systems as a function of the
filling factor v=n/m for the choice of aspect ratio
a/b =n/4 (This c.hoice of a/b seems to give an
approximate local minimum in the energy. ) To
investigate the nature of the eigenstates of the
Hamiltonian we also caleul. ated the pair correla-
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FIG. 1. The energies per particle of two-dimension-
al electron systems vs the fractional filling of the first
Landau level. The dashed and dotted lines show energy
of the electron and hole crystals resulting from the
Hartree-Fock approximation for the infinite system.
Open circles, closed circles, and triangles show the
ground-state energies for n = 4, 5, and 6 electrons
for v ~2 and n = 4, 5, and 6 holes for v ) 2. Closed
squares show the crystal state for the n = 4 system.
Open squares show the energy of the crystal state for
the n = 4 system obtained by the Hartree-Fock approx-
imation. The solid line drawn through the n = 5 ground-
state energies is a guide to the eye only.

!tion function g(r), which is the same for all states
in a degenerate multiplet. For n = 4 the g(r) for
the ground state has fourfold rotational symmetry
and has peaks at r = (aa/2, 0) and (0, ah/2), but
not at r = (+a/2, +b/2), where we would expect to
have peaks if the state were a square crystal.
States which correspond to a square crystal and
a triangular crystal are found at higher energy
for even rn. The energy of the triangular crystal
is lower than that of the square crystal and it has
a minimum at a/b =2/&3. Here g(r) has the form
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similar to that of the triangular crystal obtained
by the Hartree-Fock (HF) approximation in the
infinite system. The energy of this crystalline
state is also shown in Fig. 1.

In order to clarify further the nature of the
ground state and to clarify the boundary effect,
we also apply the Hartree-Fock approximation
to the Hamiltonian of the four-electron system.
We assume order parameters 6, , = (a, ta, ),~1~2 ~l ~2
to be finite, decouple the Hamiltonian, and obtain
self-consistent solutions for ~&, " The state
we obtain is always a triangular CDW state ex-
cept for v=-'„where we get a unidirectional CDW
state. The energy becomes minimum at a/b = 2/
v3. This energy is also shown in Fig. 1.

The HF energy of the four-electron system is
slightly lower than the HF energy of the infinite
crystal, shown in Fig. 1 by the dashed and dotted
curves for the electron and hole crystals, re-
spectively. This difference comes from the
boundary condition. In the finite system the Cou-
lomb potential between an electron and its image
separated by R = (ma, nb) is always e'/eA, where-
as an average over the Gaussian charge distribu-
tion is required in the infinite crystal. The ener-
gy difference between the finite and infinite sys-
tems is completely explained by this effect.

Next, we note that the n = 4 HF energies are
slightly higher than the energies of the "crystal
states" obtained in the exact diagonalization. The
difference, which we would like to attribute to
the correlation between nearest electrons, is
about 2 times larger than the correlation energy
estimated by Yoshioka and Lee' by second-order
perturbation theory, which seems reasonable.
However, as mentioned above, the crystal states
are not the lowest states of our systems.

As seen in Fig. 1, the ground-state energies of
our small systems tend to have downward cusps
at simple rational values of v. Clearly it is not
possible to extrapolate our data to n = ~. Never-
theless, it is interesting that the downward cusp
at v=& remains roughly constant for the three
systems calculated (n = 4, 5, 6). A cusp is also
visible at v=-,', but unfortunately we have data
points only for two values of n. By contrast, the
ground-state energy at v=-', shows a large, non-
monotonic variation with n. As a guide to the eye
we have connected the points in Fig. 1 for n = 5,
for which there are no low-order rationals except
for v=& and &. It is interesting that this curve
shows almost no cusp at v=&.

At this point, we can make a number of specula-
tions regarding the infinite system and the rela-

tion to the experiment. We regard our data as
supportive of the idea that the ground state is not
crystalline, but a transl. ationally invariant "l.iq-
uid. " We speculate that this liquid has commen-
surate energy at v=~ (and possibly other simple
rational values), and that for a large but finite
system, the ground state at v=& is threefold de-
generate and separated by an energy gap from a
variety of excited states. By going to a moving
frame, it is then clear that at v=& a Hall current
will flow without dissipation, even in the presence
of impurities. At v close to&, we further suppose
that the ground state, which is now highly de-
generate, can be described as the v=& ground
state plus an additional small density of quasi
"particles" or "holes. " This leads naturally to
a downward cusp in the energy as function of v.
The Hall plateau at o„,=&e'/h can then be ex-
plained if the quasiparticles are localized by im-
purities and thus do not contribute to the Hall cur-
rent, which is simply carried by the underlying
v=& state. Very recently, we have learned of
a very original proposal by Laughlin of a wave
function for a liquid state at v=1/p, for p odd,
which appears to have the requisite commensur-
ate energy. "

An alternative explanation of the Hall conduc-
tance plateau is also possible, assuming the exis-
tence of a commensurate energy E, at v=&, if
one believes that the electron system in the GaAs
accumulation layer is in equilibrium with the
donor states in GaAlAs by tunnelling. " For v

near &, it is energetically favorable to pin the
density at &, provided that the energy gain ~En~E,
exceeds the charging energy 2nL~(can)2/e to
transfer ~n —= (v-~)/2wP electrons across a de-
pletion layer of thickness L„. If we extract a
r'ough estimate of E, =0.008(e'/el) from the depth
of the cusp in Fig. 1 near v=~, and we use L~
= 240 A and l= 66 A (B= 15 T), this would lead to
a full width of the Hall step at v=& of 5v/v =20%,
which is consistent with current experiments.
Clearly, this alternative explanation depends on
the details of the layer structure and we find it
less appealing than the first explanation we of-
fered.
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