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Large-N Quantum Chromodynamics at Finite Temperature
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It is pointed out that at N ~, for finite temperature, the Schwinger-Dyson equations
imply that below the deconfining phase transition the Wilson loops are independent of the
temperature. This suggests a first-order deconfinement phase transition.
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It is commonly believed that non-Abelian gauge
theories undergo a phase transition at finite phys-
ical temperature. Below the critical temperature
the theory exhibits confinement of quarks and
gluons; above the transition one is dealing with a
gas of free gluons and quarks. This transition is
supposed to be present also in the pure gauge the-
ory. In such a theory there are no dynamical
quarks but the transition can be studied by look-
ing at the free energy of external static charges.
In this Letter we discuss such a transition in a
pure U(N) gauge theory in the limit of infinite N.

our main result is that all closed Wilson loops,
both timelike and spacelike, are independent of
the temperature in the confining phase. Finally
we argue that the transition should be of first
order by showing that the coefficient of the area
law for large timelike closed loops jumps from a
constant value to zero. Our -argument makes use
of the Schwinger-Dyson equations.

The Schwinger-Dyson equations for the expecta-
tion values of the Wilson loops have been derived

!
and discussed in a number of papers. ' Although

solving these equations, even for N- ~, is a
formidable task, they have been useful in obtain-
ing general results about the theory. '

We will derive such equations for a U(N) gauge
theory at finite temperature, and give a short
discussion of some implications. The properties
of a gauge theory at finite temperature can be
derived by performing the functional integral over
Euclidean field configurations that are periodic
in the "time" variable. '4 We will study a lattice
version of the theory with discrete time. The
finite-temperature condition is

n, p n+nT80, p

where i 0 is a unit vector in the time direction and
n=(n„n) denotes a lattice site. U„„is the N&&N

unitary matrix corresponding to the link joining
the site n and n+ p, where the temperature is
given by

P = (AT) ' =n,a,
where g is the lattice spacing. The statistical
mechanics of the system follows from the parti-
tion function

n =00

nT-l

q{C)=—tr P V(l)
1

N
(5)

is

n =00

Here d is the dimension of space-time. We as-
sume that the lattice is infinite in the space direc-
tions and has a size n, in the Euclidean time.
The expectation value of a Wilson loop

(4)

! Here (dU) =II„dU„„, C is a closed contour in
space-time, and l in (5) is a link on C. The
Schwinger-Dyson equations are derived by con-
sidering the quantity

(tr(V„„. V „„TV .V,.„V„,,)),
W(C) = J (dU)e cp(C)/Z. (6) where T' is a generator of U(N). Making the
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change of variables

U „-exp(ie T') U (8)

L (C)

on the link m, v does not change the expectation
value of the operator in Eq. (7). Therefore the
terms of order e must be zero. By use of the

identities
(9)

(10)

and the periodicity condition of Eq. (1), the re-
sulting Schwinger-Dyson equation can be written
as

A. 'd(n(7), v(w)) W(C)= Q Q 6(n(7.), v(r)in(w')+An, i„v(T')) W(C, , )W(C, ,),

where 1 & w &L(C) and 1 & 7' & L(C) are (discrete) parameters on the loop, and L(C) is the number of
links in C. n(w) and v(T) are, respectively, the origin and the direction of the v. link in C. i, is a unit

vector in the time direction. d(n, v) is the Makeenko-Migdal derivative on the Wilson loop, correspond-
ing to the replacement

Un, n ~ (Un, pUn+pnUn+ p+n, - p Un, n n+v, pUn+n+ p -v n+ p, - p~n, n)'
P N lj

a P

The expression

(12)

5(n, vim, p. ) = 5„5,„—5„

is the "link" delta, which is zero unless the links

n, v and m, |LI, join the same points. When they do

join the same points, it is +1 if they go in the
same direction and —1 if they go in opposite di-
rections. C „i and C, , are the two loops ob-
tained by splitting C at the points T and 7'. To
derive Eq. (11) we have used the Migdal factori-
zation condition

= (N 'tr(11U)) (N ' tr(II'U)). (14)

The usual Schwinger-Dyson equation corre-
sponds to the term with 4=0 in Eq. (11). The ad-
ditional terms appearing on the right-hand side of
the equation correspond to the possibility of break-
ing a closed loop into two loops that are closed
only as a result of the periodicity in time (see
Fig. 1). Such "open" Wilson loops are equal to
e a~, where f is the free energy of free static
quarks. Therefore they vanish in the confining
phase. Hence, in the confining phase, the Schwing-
er-Dyson equations are the same at finite temper-
ature as they are at zero temperature. The con-
clusion is that, in the confining phase and in lead-
ing order of I/N, the Wilson loops are independ-
ent of the temperature. Note that this is a strict-
ly nonperturbative result. To any finite order in
weak-coupling perturbation theory the closed
loops are temperature dependent since the open
loops are nonzero to any finite order. Since the
Wilson loops are independent of the temperature
the coefficient of the area law is also constant
in the confining phase. On the other hand, it is
easy to convince oneself that the coefficient of

a)

n I

I

l I

FIG. 1. The loop in {a) can split into the "loops" in
{b) as a result of periodicity in the time variable.

the area for large timelike Wilson loops is zero
above the deconfinement phase transition. A

brief "proof" goes as follows. Consider a rec-
tangular timelike loop extending Mn, lattice sites
in the time direction and x sites in the space di-
rection. This way the top spacelike edge of our
rectangular loop lies—because of periodicity in
time —on top of the lower spacelike edge and
traverses it in the opposite direction. If we per-
form the Makeenko-Migdal derivative at a space-
like link, the loop will break —by virtue of fac-
torization to leading order —into two open loops.
But those open loops are nonzero and, because
of the "backtracking" explained above, independ-
ent of x. Therefore, in order to have a consis-
tent equation the coefficient of the area for large
timelike loops must be zero. That open loops of
all lengths are nonzero can be shown by use of a
similar argument. We feel that since the coef-
ficient of the area for large timelike loops is
zero above the deconfining phase transition and
constant (and finite) in the confining phase, the
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FIG. 2. The coefficient of the area of large timelike
loops as a function of temperature.

coefficient must have a discontinuity at the transi-
tion (see Fig. 2). This discontinuity is only pos-
sible if the deconfining transition is a first-order
phase transition. "
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