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Effect of Gap Distortion on the Field Splitting of Collective Modes in Superfluid *He-B
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The field splitting of the real squashing, J= 2, mode in *He-B is shown to become highly
nonlinear at large fields as a result of the ellipsoidal deformation of the energy gap. This
leads to crossings of the J, =+1 and J, =0 levels with the J, =+2 level. The crossing
points depend sensitively on the couplings between the J =2, 1, and 0 modes. The theory
is in good agreement with the observed field evolution and level crossing as measured

recently by Shivaram et al.

PACS numbers: 67.50.Fi

The condensate of superfluid *He-B consists of
p-wave Cooper pairs in spin-triplet states S,
=+1and S,=0. The fluctuations of the corre-
sponding order-parameter components about their
equilibrium values give rise to eighteen order-
parameter collective modes.! These eighteen
modes can be classified in terms of total angular
momentum J=0, 1, and 2. The J=2 modes, i.e.,
the so-called squashing (sq) and real squashing
(rsq) modes, have ideal frequencies (without Fer-
mi-liquid corrections) equal to w= ()" %A, and
w=(2)2a, where A, is the BCS gap parameter.
The unique nature of the J=2 modes is that in a
magnetic field they split into five components.?

Field splitting of the sound-absorption peak due
to the rsq mode into five components has been ob-
served first by Avenel, Varoquaux, and Ebisawa.®
For low fields (up to about 50 mT) this splitting
is linear with magnetic field # in accordance with
the theoretical prediction.? This linear splitting
arises solely from the S, =0 component of the
spin-triplet Cooper pairs which leads to (1) aniso-
tropic spin polarization, and (2) a dynamic spin-
singlet pairing component. Both effects give rise
to contributions proportional to (H -d)(d x &d) in
the equation of motion for the fluctuation &d of
the order parameter vector d.

In recent acoustic impedance measurements
Shivaram ef ql.* have observed a strong nonlinear
behavior of the levels of the rsq-mode quintuplet
and even a crossing of levels as the field increas-
es to about 0.2 T. In the following we shall show
that the previous theory of Ref. 2, which is valid
for all fields, is also capable of explaining the
observed nonlinear field behavior and the crossing
of levels at higher magnetic fields. It turns out
that the ellipsoidal deformation of the energy gap
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by the field*® is responsible for the crossing of
levels (this effect was not noticed in Ref. 2 be-
cause gap distortion was neglected in the numer-
ical calculations and figures). This is similar to
the effect of quadrupolar deformation of nuclei on
the hyperfine spectrum. We find that in large
fields the nonlinear effects of gap distortion on
the J,=+1 and 0 states become smaller if coup-
ling between J=2 and J=1 or 0 is taken into ac-
count. This means that we are dealing with a
field regime lying between the Zeeman regime
(J is a good quantum number) and the Paschen-
Back regime (L, and S, are good quantum num-
bers®). J, is a good quantum number for all
fields.

The importance of the gap distortion effect in
3He-B is demonstrated by the fact that the mag-
netic susceptibility increases as the field is in-
creased.” The reason is that the transverse gap
parameter A, increases with respect to the BCS
gap A, and the longitudinal gap parameter A, de-
creases as the field is increased.? The param-
eters A,® and A,? are proportional to the fractions
of the S,=+1and S,=0 Cooper pair populations.
Since A, and thus the fraction of S, =0 pairs is
suppressed, the susceptibility is enhanced as #
is increased. The self-consistent equations de-
termining the gap parameters and the effective
field have been extended?® to include, in addition
to the effect of the Landau parameter F ¢, the ef-
fect of F,%. The calculated susceptibility is found
to be in good agreement with that measured in
Ref. T.

Let us reformulate now the theory of Ref. 2 in
terms of quantum numbers J, J, of total angular
momentum. The equations for the order-param-
eter fluctuations have been stated by two of us®

© 1983 The American Physical Society



VoOLUME 50, NUMBER 14

PHYSICAL REVIEW LETTERS

4 APrIL 1983

in the form of eigenvalue equations for the order-
parameter fluctuations: [(3v,)™' + R’']6d’=0. Here
3v, is the BCS coupling constant for p-wave pair-
ing, R’is a 9x9 matrix, and &’ is a nine-compo-
nent column vector of the real parts of the order-
parameter fluctuations &, (j, p=x,y,2). An
analogous equation holds for the vector &d’’ of

the imaginary parts of the &d; , The small coup-
ling of 8d’ and &d’’ by particle-hole asymmetry
has been discussed elsewhere!'® and will be ne-
glected in the following. A unitary transforma-
tion by means of a 9 X9 matrix U leads from the
nine Cartesian basis vectors for the direct pro-
duct of orbital and spin space to the nine basis
vectors |J, J,) (J=0, 1, 2) which are eigenvectors
of total angular momentum J. The transformed
equation of motion becomes A’(U dd’)=0 where
A’'=[(3v,)' + UR'UT]. The eigenfrequencies of

the real collective modes are given by det(A4’)

=0. It turns out® that det(A4’) factorizes into five
secular determinants corresponding to J, =+2,
J,=%1, and J,=0. These secular determinants
are found to be identical with those given in Ref. |

W= w,=~ Jz ngl(wo)+ Jzz“"vo —2(A12 - Azz)[% - ;‘gzl(""’o) - l§g“(“"o)]

2 as it should be because they are invariant with
respect to unitary transformation. The zeros of
the J, =+2 determinant [see the factor in square
brackets in Eq. (63) of Ref. 2] yield the frequen-
cies of the J,=+2 components of the rsq mode.
The zeros of the J, =+1 determinant [see Eq.

(51) of Ref. 2] yield the frequencies of the J, =+1
components of the rsq mode and the frequencies
of the transverse NMR modes. Inthis expression
there occur off-diagonal matrix elements of A’
which lead to couplings between J=2 and J=1.
The zeros of the J, =0 determinant [see the tactor
in curled brackets in Eq. (63) of Ref. 2] yield the
eigenfrequencies of the longitudinal NMR mode,
the mode at 2A, and the J, =0 component of the
rsq mode. Here occur off-diagonal matrix ele-
ments of A’ which couple J=2, 1, and 0. An
analogous factorization holds for the secular equa-
tion of the sq-mode quintuplet [see Eq. (80) of
Ref. 2 for J,=+2,0 and Ref. 6 for J,=+1].

From the expressions in Refs. 2 and 9 we ob-
tain to lowest order in the field and gap distor-
tion the following frequency shifts for the rsq-
mode quintuplet:

(1)

+ Wel 2 {(AIZ = 8,)[5 + 28" (w,) - g‘gzn(wo)]"' (4,2 - Aoz)[g ~-%8," (w,) - ;‘gzn(wo)] }

Here w,=(%)"/?4,, and g,’(w,) and g,""(w,) are the
temperature-dependent Land€é factors of Ref. 9
for the rsq and sq modes taken at w=w, For
F,%=0 the effective Larmor frequency { is given
by2, 8

== yH[1+ F,* x5 (20)/ x,°] .

For consistency of the approximation one must
take the zero-field ideal susceptibility xzy°/x,°
=(2+Y)/3 where Y is the Yosida function. The
nonlinear frequency shifts in Eq. (1) which arise
from gap distortion are proportional to A% - A,?
A2-AF2 and A2 —-A2 To lowest order in §?
one has® (A°—A%)=*/4 and (A2 —A2) ==
where ¢=3 for 7=0and c~1for 7= 7,: c=3
+(a,/4)(8/8A)In(1 - 1),

We have calculated numerically the gap param-
eters A, and A, and the rsq-mode frequencies
from the exact equations of Refs. 8 and 2. For
Ay(7) we take the BCS gap. The m*/m values of
Greywall and Busch!! have been used to determine
F,?%, and F,°® is set equal to zero. In Fig. 1 we
show the field evolution of the rsq-mode frequen-
cies for a pressure of 1.35 bars and a fixed tem-
perature 7,=0.777, (solid lines). For compari-
son we have included in Fig. 1 the frequencies

(2)

which have been calculated by taking A, =A,=4,
(dotted lines). One sees clearly that gap distor-
tion is the main reason for the strong deviation
from linear field splitting. For about #=0.16 T
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FIG. 1. Field evolution of the rsq-mode frequencies
w for J,=+2,...,-2, at p=1.35 bars, F;¢=-0.712, and
Ty=0.77T, (solid lines). The dotted lines have been
calculated by neglecting gap distortion (A= A,=A)).
The dashed lines for J, =0, =1 have been obtained by
neglecting coupling between J= 2 and J=1 or 0.
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we obtain crossing of the J,=+2 and +1 levels,
and for #=0.19 T there occurs crossing of the
J,=+2and 0 levels. It is interesting to notice
that the levels for J,=—2 and -1 disappear above
a threshold field. The reason is that the effective
pair-breaking edge (equal to 24, - Q for all fields)
decreases as the field is increased.

We have evaluated also the zeros of the exact
diagonal matrix elements (2, 0/4’|2, 0) and
(2,+1]A’|2, £1) neglecting the coupling between
J=2and J=1,0. The resulting frequencies of the
J,=0and +1 modes are given by the dashed lines
in Fig. 1. Comparison between the solid and
dashed lines shows that the mixing of different
at given J, =0, £1 leads to a substantial increase
of these frequencies.

In Fig. 2 we show the measured* and calculated
frequency shifts Aw (abscissa) of the rsq-mode
states as a function of A (ordinate) for p=1.35
bars and 7,=0.777T,. One sees that the shapes
of our theoretical curves are very similar to
curves which can be drawn through the experi-
mental bars (level widths). The experimental
field for the crossing point of the J,=+2 and +1
levels is about 0.14 T while the calculated field
is about 0.16 T. One notices that the measured
nonlinear field behavior of the J,=+2 and +1
levels is even more pronounced than the calculat-
ed one.

We have calculated also the frequency shifts
Aw=w-w, from Eq. (1) and find very good agree-
ment with the exact results over the whole range
of fields shown in Fig. 2. Since this holds for all
temperatures and pressures we conclude that Eq.
(1) yields a good account of linear as well as non-
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FIG. 2. Frequency shifts Aw (abscissa) of the rsq-
mode states J,=+2, ...,-2, vs field H (ordinate), at
p =1.35 bars, F,?=-0.712, and 7,=0.77T.. The ex-
perimental bars (level widths) are taken from Ref. 4.
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linear field splitting.
Shivaram et al.* have fitted their observed fre-
quency shifts by the expression

Aw=a(T,p)d H+ (T, p)J,*H* = I(T,p)H>. (3)

This is just the form of Aw=w- w, given by Eq.
(1) together with Eq. (2): « is proportional to the
Landé€ factor g,’(w,), Bis proportional to the fac-
tor multiplying J,% and - I" is proportional to
the last term in Eq. (1). Figures 3(a) and 3(b)
show plots of our theoretical gand I'vs 7/7,

for p=1.35 and 7.3 bars. These gand I have
been determined by fitting our exact curves for
Aw(H) (like those in Fig. 2) by Eq. (3). The agree-
ment between the measured* and calculated val-
ues of Band I'is seen to be reasonably good. We
have also calculated gand I directly from Eq. (1)
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FIG. 3. The quadratic field terms g and I' of the
rsg-mode frequency shift [see Eq. (3)] are plotted in
(a) and (b) as functions of 7/T, forp =1.35 bars, F?
=-0.712 (solid lines), and p= 7.3 bars, F (> =-0.740
(dashed lines). Open squares (circles) represent data
of Ref. 4 taken at 38.24 MHz around 1 bar (63.77 MHz
around 7 bars). The dashed-dotted (1.35 bars) and dot-
ted (7.3 bars) lines in (b) represent the I' of the squash-
ing mode.
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and find very good agreement with the curves
shown in Fig. 3. Thus we conclude that the rela-
tively simple expression for Aw in Eq. (1) con-
stitutes a very good approximation for the whole
range of experimentally accessible fields.

One sees from Fig. 3 that the quadratic field
parameters gand I increase as 7 increases to-
wards 7,. This behavior can be explained with
the help of Eq. (1). For instance, comparison of
Egs. (1) and (3) shows that g is proportional to

(8,2 =20,2)/(AH?) = (3+)NQ/H? /Ay

Thus g rises like (7, - 7) “/2 35 T increases to-
wards 7,, and the same is true for I. Further
one sees from Eq. (2) that a decrease of F,° leads
to an enhancement of . We find better agree-
ment between the measured® and calculated val-
ues of @, B, and I"by employing the F,¢ values
due to Ref. 11 rather than those given by Alvesalo,
Haavasoja, and Manninen,'?

The effect of F,* on the rsq-mode frequencies
has been considered so far only to first order in
the field.'*!* The inclusion of F,* in the nonlin-
ear theory of Ref. 2 will be carried out'® self-
consistently in analogy to Ref. 8. The sensitivity
of the crossing point should enable one to de-
termine bounds for F,® by fitting the experimen-
tal level widths.

Finally we remark that for the squashing-mode
quintuplet we have obtained a similar nonlinear
field evolution.® However, mode crossing occurs
only between the J,=+2 and +1 states. The Iy,
which describes the frequency shift of the J,=0
component [see Eq. (3)] is shown in Fig. 3(b).

In conclusion we can say that the observed non-
linear field evolution and crossing of rsq-mode
levels can be explained convincingly by the theory
of Ref. 2 if the ellipsoidal deformation of the ener-

gy gap, that is, the suppression of S, =0 pairs,
is taken into account.
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