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Nucleation and growth are studied in the metastable region of the Glauber-kinetic Ising
model with medium-range interactions. Monte Carlo data indicate that the nucleating
droplets are not in general compact but quickly become so during the initial phase of
growth and then grow as compact droplets. This two-stage growth process is also pre-
dicted by a qualitative theory.

PACS numbers: 64.60.My, 05.20.-y, 05.70.Jk

Previous Monte Carlo simulations of the nucle-
ation and growth processes in Ising models have
focused on systems with short-range interac-
tions. ' ' These studies have indicated that away
from the critical point the nucleating droplets
are quite compact and that classical nucleation
and growth theory' ' accurately describes the
phenomenon. However, studies" of the proper-
ties of the metastable states of Ising models with
medium-range interactions and Glauber kinetics
have indicated that the "equilibrium" droplet dis-
tribution was not that of a classical droplet model
for deep quenches, but was of a ramified or lat-
tice-animal" form. In this Letter we report the
results of Monte Carlo simulations of the nucle-
ation and growth phase of these medium-range
models and also present a "zeroth-order" theory
which gives some qualitative understanding of the
data.

In our simulations we used the equivalent-neigh-
bor model" for a simple cubic lattice of size 40'.
In this model each spin interacts with any spin
within the interaction range 8„ i.e. , with q
neighbors (here q= 124). Within R, the interac-
tion energy is constant and there is no interac-
tion with spins outside the range R, . We worked
at T/T, =0.45, where T, is the critical tempera. -
ture of this model. The effective magnetic field
It = 2 &&(magnetic dipole moment) x(magnetic field)/
kBT was fixed at k =1.35. (The mean-field spin-
odal is at h, =1.42. ) We started with a totally
ordered configuration. The magnetic field was
then turned on in the direction opposite to the
magnetization. With use of Glauber kinetics and
random selection of spins, the system was moni-
tored as it evolved into metastable equilibrium
and then nucleated. During this time, configura-
tions were periodically frozen and analyzed.

The primary results of our simulations are con-
tained in Fig. I where lnS is plotted against lnR.
Here S is the number of spins in a droplet and R

is its radius of gyration defined by R'= (1/S)Q; r, '
Note that we have used the metric max(M, &y)

-B, for the interaction and the Euclidean metric
for the radius of gyration. Our droplets are de-
fined with percolation concepts, i.e., two up
spine are said to belong to the same droplet (or
cluster) if they are closer together than the inter-
action range and if there is an active bond be-
tween them. Bonds between up spins are active
with a probability p, = 1 —expI(-4Z/k 8 T)(1 —p)],
where p is the density. The reasons for choosing
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FIG. 1. Logarithm of the cluster size 8 vs logarithm
of the radius of gyration R of the droplet. Different
symbols denote separate runs and the numbering in-
dicates time sequence with number 1 being the nucleat-
ing droplet. For simplicity, four runs are shown that
represent 20%%uo of the data taken. The four sets repre-
sent the two extreme cases of the most compact and the
most ramified nucleating droplets and bvo intermediate
cases.
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such a definition for droplets is discussed else-
where. '" Here we simply mention that we have
numerically verified the predictions based on
this droplet definition for the quasiequilibrium
properties in the metastable state. ' In Fig. 1
each type of symbol represents a different Monte
Carlo run and the points are numbered in time
sequence with number 1 in each run being the
best guess for the nucleating droplet. Two cri-
terion were used to determine the onset of nu-
cleation; at least one droplet grew monotonical-
ly and the magnetization increased monotonical-
ly until the stable phase was reached. Two points
should be noted. (1) There is a large spread in
the size of the nucleating droplet when measured
by either S or R, i.e., there is no well-defined
critical size. This is in contrast to the predic-
tions of classical nucleation theory. (2) Inspec-
tion of Fig. 1 indicates that the droplets grow in
two stages. In the initial stage R remains rough-
ly constant. In the later stage the growth can be
fitted by a straight line with slope 3 in agreement
with classical theory.

A useful concept for analyzing the data is the
effective dimension d, =- lnS/lnR. This is to be
distinguished from the fractal dimension" d&=
-lnA/lnR +lnS/lnR, where A is a.n amplitude that
is bounded but may depend on R. Clearly in the
limit R-~, d+=df, however, for finite R, d,
= dz+1nA/1nR. The concept of effective dimension
is useful for finite R, when A is not constant, be-
cause it is impossible to separate the effects of
df and A. In the later stage of growth where the
data can be fitted with a straight line with slope
3, we have d, =3+C/lnR, where C is the inter-
cept of the 1nS vs lnR plot at 1nR = 0.

The data in Fig. 1 can now be interpreted in the
following way: Initially, the droplet that causes
nucleation of the system generally has d, &3+C/
lnR. During the initial stage of growth R remains
constant while the droplet fills in or "compacti. —

fies" until d, =3+C/lnR. The droplet then grows
according to the classical growth theory. We
will call droplets with d, = 3 +C/lnR compact and
droplets with d+ &3+C/lnR ramified.

It is also important to note that the spread in
the lnS vs lnR plot which occurs at nucelation de-
creases as a function of time. Here we should
mention that the data, in Fig. 1 represent 20% of
the data taken. The remaining data are consis-
tent with that shown in the figure and were omit-
ted for the sake of clarity of the diagram. This
is consistent with our interpretation of compacti-
fication in the initial growth state and suggests

that it takes place in a finite, rather short, time.
We can understand some of the features of the
data by means of a very simple theory described
below.

In previous theories of cluster growth"'" drop-
lets are assumed to be compact and the only signi-
ficant addition of monomers takes place on the
surface. Consequently each additional monomer
contributes to the growth of the droplet radius.
For more ramified droplets additional monomers
can add to either the growth of the radius or the
effective dimension d, of the droplet. Moreover
these two processes can compete with each other
for the available monomers in the environment
of the droplet.

In most considerations of droplet growth it is
assumed that the difference between the capture
and the evaporation rates after nucleation is pro-
portional to the droplet surface, "which for rami-
fied droplets would not be proportional" to g " '~ ".
We should also take into account the possible
screening of surface sites by the proximity of
other occupied sites. " In order to account for
these effects we will divide the ramified droplet
of S spins into two parts (see Fig. 2) by means of
two concentric spheres whose centers are at the
center of mass of the droplet. The outer sphere
(1) is the smallest sphere that contains the en-
tire droplet. The spins in the inner sphere we
will designate as the interior of the droplet and
the spins in the shell between spheres 1 and 2
we will call the exterior. The number of spins
in the two regions will be designated as S, and S~,
respectively. On physical grounds we argue that
the effective surface, i.e., the surface available
for the incorporation of monomers after screen-
ing is accounted for, is different in these two
regions. The exterior shell is envisioned as
quite small compared with the interior and plays
the role of an outer "surface. " We define screen-
ing parameters x and y (x, y - 1) by taking for the

Exterior = a Rd+

Interior = bRd+

FIG. 2. Schematic ramified droplet with two concen-
tric spheres dividing the droplet into an interior and
exterior region. For low temperatures the droplet is
more cubical.
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effective interior and exterior surfaces S," and
S~', respectively. With the assumption that the
difference between capture and evaporation rates
is proportional to the effective surface, we have

dSI /dt = o!Sg

and

independent of time. We complete our formula-
tion by taking

S

dS~/dt = PS~",

where n and P may depend on x and y but for
simplicity mill be considered, as mithx and y,

(5)

where a and b are constants. Since R"+ will be
large for all t after nucleation, the equations to
first order in t will be a good approximation to
the solutions of Eqs. (1)-(4). We obtain

lnR =lnR*+ nt/(1 y)(R*)'+ " ' pt/(1 x)(R*)"+* """ '

where quantities with asterisks are the values at t =0.
Equations (5) and (6) allow a, qualitative understanding of Fig. l. If we set d, = 3 + C/lnR in Eq. (5)

we obtain t„ the time that it takes for the droplet to compactify:

f, = [InR*(d —d+*) —C] fl a(1 —d+*)/(1-y) +d+p/(1-x)]

+[&/(1 y)(R+)d+ (1 9) p/(1 x)(R8)~d+ 1){1 +)]) 1

Over this time interval the growth in R is given by

lnR=lnR*+InR*[D, /(R*)'+ " ' +D,/(R*) '+ " ' '&],

(6)

(8)

where D, and B, are constants that depend on a,
P, x, y, d, ", and R*. Equations (7) and (8) pre
dict that for finite R* the droplet will compactify
in a finite time and that during this time the
change in R will be small since

InR*/(R*)~+ ~'

will be a small quantity.
It is interesting to note that Eqs. (7) a,nd (8) also

predict that t, mill diverge as 1nR* as we get
closer to the mean-field spinodal where R* di-
verges. " This limit will produce an even small-
er increase in R over the t, time interval.

Finally it should be noted that Eqs. (5) and (6)
indicate the possibility of other forms of "growth"
after nucleation. For example, Eqs. (5) and (6)
admit solutions where d, increases while Rde-
creases for o/P»1 and where d, decreases and
R increases for n/p«1. The physical content
of these gromth patterns and their possible con-
nection with effects observed in deep quenches"
is being investigated.

To summarize, we have performed Monte Carlo
simulations on Ising models with medium-range
interactions and found evidence to support the
interpretation that in deep quenches the nucleat-
ing droplets" are in general noncompact. This
is consistent with the result that critical droplet

surfaces become diffuse in the limit of large R."
These droplets grow by rapidly compactifying
and then growing as compact droplets. We have
also presented a crude theory that gives results
consistent with this interpretation.
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A detailed discussion of why this decay process is
nucleation will be presented in a future publication.
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