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Multimode Theory of Free-Electron Laser Oscillators
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The nonlinear self-consistent theory of short-pulse free-electron laser oscillators can
now be extended to include transverse diffraction within the optical resonator mode. The
theory provides efficient solutions to the three-dimensional parabolic-wave equation coup-
led to the Lorentz force equation. The method is general enough to include arbitrary mag-
net designs, optical mirror arrangements, and driving currents. New mode structures
are predicted which should be observed in future experiments at Stanford University.

PACS numbers: 42.55.-f

Optical wave fronts in a free-electron laser
(FEL) are driven by relativistic electrons travel-
ing through a static, transverse undulating mag-
netic field. " In the oscillator these wave fronts
are stored in an open spherical-mirror resona-
tor. ' Typically the shape of the electron beam
from an accelerator or storage ring does not
match the longitudinal or transverse mode struc-
ture of the optical resonator (see Fig. 1) so that
a theoretical analysis must be capable of describ-
ing the nonlinear multimode behavior that devel-
ops over many passes. The first measurements
of these higher-order modes will be made in the
next year at the Stanford University High Energy
Physics Laboratory; their initial experiments
are in agreement with our theory. '

Since the original FEL experiments, numerous
studies have been made that have been restricted
to a single-mode plane-wave analysis. "The
longitudinal mode structure in an FEL with a
short optical pulse has been examined experi-
mentally' and theoretically. ' " The transverse
modes of the FEL have also been considered, " "
but calculations have been restricted to the single-
pass amplifier without a self-consistent electron
current. The full nonlinear, multimode problem
of the FEL oscillator with a self-consistent cur-
rent remained to be solved.

The FEL system is properly described by the
coupled Maxwell and Lorentz-force equations.
Here we present a powerful self -consistent meth-
od of solution to the nonlinear FEL oscillator
problem describing the complex mode evolution
in each dimension. The undulator magnet through
which electrons pass is l3 = [Bcosk~, Bsink, z, 0]
where B is the magnetic field amplitude which
extends over a. length I., and 3, =27t/k, is the

magnet wavelength. With perfect injection into
helical orbits the electron's velocity is cP = -[P,
&cosk,z, p, sink~, p, ]c where p, =eBX,/2vymc',
e = ~e

~

is the magnitude of the electron's charge,
m is the electron's mass, c is the speed of light,
and @me' is the electron's energy.

The optical vector potential is general in form
except that the polarization is chosen to match
the spontaneous emission from electrons in the
undulator so that A(x, t) = k ' ~E(x, t)

~ [ siny, cosy,
0] where y=kz-~t+ j(x, t), ~=kc, and k=2~/k
is the optical wavelength. The complex electric
field envelope E(x, t) = ~E(x, t)

~

e' ~"' ' is taken
to be slowly varying in z and t so that when A(x,
t) is inserted into Maxwell's equations the re-
sult is the well-known parabolic wave equation.
In a dimensionless coordinate system where T

=tc/L, x =x(k/2L)' s, y=y(k/2L)' ', and z =(z
-ct)/5 with 0 being the electron's pulse length,
the parabolic wave equation becomes

(- ;i V, '+ —8/sT)a(x,y, Z, T)

where V,'= ~ + ~, and the dimensionless elec-
tric field is a =4~NeP, LR/y, mc'. The current
density is j =8~'Ne'P, 'L'p/y, mc', y,mc' is the
electron's initial energy, the slippage is s =(1

P,)L/&, and a—ngular brackets denote an average
over the electron phases f=( k+,k) z—o t. Equa-
tion (1) governs the dynamics of the optical wave
over many optical wavelengths in the longitudinal
(z) dimension'7 and the V,' operator properly
describes the diffraction of the optical wave in
the (x, y) directions. The result (1) without dif-
fraction (without the V,' term) has been derived
earlier" and used to solve the FEL problem of
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