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The nonlinear self-consistent theory of short-pulse free-electron laser oscillators can
now be extended to include transverse diffraction within the optical resonator mode. The
theory provides efficient solutions to the three-dimensional parabolic-wave equation coup-
led to the Lorentz force equation. The method is general enough to include arbitrary mag-
net designs, optical mirror arrangements, and driving currents. New mode structures
are predicted which should be observed in future experiments at Stanford University.

PACS numbers: 42.55.-f

Optical wave fronts in a free-electron laser
(FEL) are driven by relativistic electrons travel-
ing through a static, transverse undulating mag-
netic field."? In the oscillator these wave fronts
are stored in an open spherical-mirror resona-
tor.® Typically the shape of the electron beam
from an accelerator or storage ring does not
match the longitudinal or transverse mode struc-
ture of the optical resonator (see Fig. 1) so that
a theoretical analysis must be capable of describ-
ing the nonlinear multimode behavior that devel-
ops over many passes. The first measurements
of these higher-order modes will be made in the
next year at the Stanford University High Energy
Physics Laboratory; their initial experiments
are in agreement with our theory.*

Since the original FEL experiments, numerous
studies have been made that have been restricted
to a single-mode plane-wave analysis.®>® The
longitudinal mode structure in an FEL with a
short optical pulse has been examined experi-
mentally” and theoretically.®”!° The transverse
modes of the FEL have also been considered, !¢
but calculations have been restricted to the single
pass amplifier without a self-consistent electron
current. The full nonlinear, multimode problem
of the FEL oscillator with a self-consistent cur-
rent remained to be solved.

The FEL system is properly described by the
coupled Maxwell and Lorentz-force equations.
Here we present a powerful self -consistent meth-
od of solution to the nonlinear FEL oscillator
problem describing the complex mode evolution
in each dimension. The undulator magnet through
which electrons pass is B =| Bcosk,z, Bsink,z, 0]
where B is the magnetic field amplitude which
extends over a length L, and x,=27/k, is the

1050

magnet wavelength. With perfect injection into
helical orbits the electron’s velocity is c¢8=—|8,
Xcoskyz, B, sinkyz, B, ]c where B,=eBx,/2mymc?,
e=|e| is the magnitude of the electron’s charge,
m is the electron’s mass, c is the speed of light,
and ymc? is the electron’s energy.

The optical vector potential is general in form
except that the polarization is chosen to match
the spontaneous emission from electrons in the
undulator so that A%, ¢) =k~'|E(Z, t)|[ siny, cosy,
0] where y=kz—wt+@(X, t), w=kc, and A=21/k
is the optical wavelength., The complex electric
field envelope E(X, t) = |E(X, t)]e“*'? is taken
to be slowly varying in z and # so that when A(%,
¢) is inserted into Maxwell’s equations the re-
sult is the well-known parabolic wave equation.
In a dimensionless coordinate system where 7
=tc/L, ¥ =x(k/2L)"2, §=y(k/2L)V2, and =(z
—ct)/6 with 6 being the electron’s pulse length,
the parabolic wave equation becomes

(-3iV,2+09/01)al%,y,2,7)
:<je-ig>(f.§.;+sT,T)y (1)

where V,2=09;%+085% and the dimensionless elec-
tric field is a =4mNeB,LE/yymc® The current
density is j=8m*Ne?B,2L%p/yymc?, yymc? is the
electron’s initial energy, the slippage is s =(1
-B,)L/5, and angular brackets denote an average
over the electron phases ¢=(k +k,)z —wt. Equa-
tion (1) governs the dynamics of the optical wave
over many optical wavelengths in the longitudinal
(z) dimension'” and the V2 operator properly
describes the diffraction of the optical wave in
the (x, ) directions. The result (1) without dif-
fraction (without the V,? term) has been derived
earlier™ and used to solve the FEL problem of
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short-pulse propagation.®
The incremental solution to (1) is given by

a7, 3,2, 7+ A7) =exp(3i ATV 2)a(X, 7,2, T) = AT je T )5 5 s grry + O(JAT?) (2)

and this solution is exact when there is no cur- '

rent j=0. To evaluate the diffraction operator than (2L/k)1/2, then the operator exp(iATV ,2/4)

exp(iATV 2/4) we work in Fourier space where ~1 and diffraction can be neglected.

the operator is diagonal and may be efficiently The self-consistent evolution of the electron
implemented numerically.'® Wave fronts a(x, y) current in (1) is governed by the Lorentz-force
can now be correctly propagated forward in time equation y=ef-(9A/3¢)/mc? for each electron in
and the current will amplify the wave where j(¥,y) the beam. With use of 3 and AR, t) given above,

is nonzero. When the transverse size of the elec-  the electron equation of motion has been previous-
tron pulse and the wave fronts are much larger | ly shown to take the form of the well-known pendu-

lum equation in ¢,

V(%,7,Z+s7,7) = {(%,9,Z +s7, 7) = 4[a(%, 7, Z, T)e (53T 46 6], (3)

where the overdot means derivative with respect |

to 7 and v=L[(k, +k)B, - k]= ¢ is the dimension- is explicitly self-consistent and nonlinear. The

less velocity for each electron. The initial elec- examples we have chosen include diffractive ef-
tron coordinates (&, v,) are arbitrary, but typical- fects in (¥, §) but not the better understood slip-
ly they are chosen to be uniformly spread in g, page problem,®~° go that s =0 in what follows.
and monoenergetic in v, to characterize a realis- The method used to determine the stable reso-
tic FEL, nator modes in the FEL oscillator is similar to

The coupled equations (2) and (3) form our theo-  the method used by Fox and Li' to determine the
ry. They have been used extensively in single- eigenvalues of optical resonators without sources.
mode calculations'®!” [where ¢(7) does not de- Our procedure is to propagate the optical wave
pend on (¥, ¥,Z)], and in longitudinal multimode from mirror to mirror along the undulator where
calculations® where transverse effects, (¥,7) de- it is amplified by the electron beam as shown in
pendence, were negligible. As in Ref. 8 short- Fig. 1. Both mirrors M1 and M2 have radius
pulse effects are included through the electron T, in dimensionless transverse units [ the mirror
pulse length 6 in s; the extension here is to in- radius times (k/2L)1/2], The first mirror M1 is
clude all three spatial modes (%, y,Z). When (2) taken to be perfectly reflecting while the fraction-
and (3) are integrated together, each electron al power lost through M2 is e~'/9 per pass. At
responds to the superimposed optical field at each mirror surface, the wave front experiences
each site (¥, 7, Z) at each time 7, and the method a phase shift given by 6¢(x, 5) = =72/, where 72
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FIG. 1. The resonator cavity unfolded in time to fol-

low the evolution of the optical wave front. In this view FIG. 2. The steady-state wave front |a(#,y)|? at the
the mirrors M1 and M2 act as lenses to focus the wave output mirror M2 after n = 100 passes resembles the
front back to the mode axis. The wave front is ampli- TEM,, cavity mode. The wave-front energy E () (in-
fied by a new electron beam on each pass through the set curve) has increased to a final value of E(100)

laser’s undulating magnetic field. =2600.
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FIG. 3. The steady-state wave front |a(%,y)|? at the
output mirror M2 after » = 100 passes. The off-axis
electron beam with Ay = 1.0 has distorted the steady-
state wave front into four distinct peaks. The peak opt-
ical field | @ | ;2= 15 and the wave-front energy is in-
creased to a final value of E(100)=1100.

=x2+y% and 7, is the radius of curvature of the
mirror divided by L. The mirror separation
divided by the undulator length L is 7,. The wave
fronts propagate freely outside the undulator and
on the return trip from M2 to M1.

When entering the undulator the wave front is
amplified by the electron beam. The electrons
at each point (¥,7) are uniformly spread in the
initial phases ¢, and all start at v,=27 for max-
imum gain in strong fields. Along the undulator
we must integrate the coupled equations (2) and
(3) from 7=0 to 1, the end of the magnet. The
shape of the electron-beam density is arbitrary
in the theory, our example used the parabolic
form j(7) =j,l1 ~72/(20?) ] for 72< 262 and j=0
elsewhere outside the electron beam. The peak
density is j, and the width is .,

We continue bouncing the light between the mir-
rors until steady state is attained. Amplification
and mode distortion continue until the optical
fields become strong enough to reduce the gain
per pass to balance the resonator losses.®?

The final mode structure then depends on the
nonlinear properties of the combined electron
beam and resonator described by the parameters
Joy Oy @, 7, and r,. The results displayed in Fig,
2 use a resonator described by »_.=1.4, 7,=3.0,
T,.=2.4, and @ =66, The peak current density j,
=60 is spread over a width 0=0.25 centered on
the resonator axis. Observe that the wave-
front energy (inset curve) after the nth pass,
E(n) = Jd% dy|a(%,7) ’, grows until the strong op-
tical fields reduce the gain to match the reso-
nator losses. The gain [E(#)/E(n -1) 1] is
shown as a dotted curve. The stable mode is
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FIG. 4. With the electron beam further off axis we
find another steady-state wave front with weaker fields
|a|max=10. This mode has a structure reminiscent
of the TEMj3y mode and the wave-front energy is now
E(100) = 500.

reached with a peak field |a(X, y) |, =24 and
differs slightly from the free case (j=0). In
this case the resonator operates with a mode
structure that is qualitatively similar to the low-
est-order free-cavity mode. These parameters
have been chosen to simulate the Stanford FEL
and recent experiments®* are in agreement with
the mode structure shown in Fig. 2,

More complicated mode structure is possible
as shown in Figs. 3 and 4, In these cases, the
electron beam travels parallel to, but off of, the
mode axis by amounts Ay =1,0=4G and Ay =1.2
=4,80, respectively. In each case the mode peak
on the positive y axis overlaps the electron beam
when in the undulator and spreads to the larger
pattern shown at the M2 mirror surface. The re-
sult of the off-axis electron beam is lower power
in the FEL oscillator. We expect this behavior
to be seen in experiments that will soon be car-
ried out at Stanford University.*
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