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Chiral Symmetry Breaking in Nonequilibrium Systems
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Sensitivity of a nonequilbrium chemical system to small symmetry-breaking influences
is analyzed in the context of chiral-symmetry breakimg. For a hypothetical model sys-
tem, with realistic kinetic constants, a reaction energy barrier difference of b, Rlkt
= 10 '~-10 ' is shown to be sufficient to have a strong chiral selectivity. This is in the
range of the estimated energy differences between right- and left-handed molecules due to
weak neutral currents.

PACS numbers: 05.70.Ln, 82.20.Hf, 82.20.Mj

It is well known that symmetry breaking can
occur in systems far from thermodynamic equi-
librium. " In this note, we investigate the break-
ing of chiral symmetry in molecular synthesis,
discuss the effects of small chiral. infl. uences on
such processes, and obtain an order-of-magni-
tude estimate of the energy of interaction re-
quired to produce macroscopic chiral. selection.

It has been shown that, depending on the sym-
metry that is broken, one can obtain the quaI. i-
tative aspects of the symmetry breaking by ob-
taining the form of the bifurcation equations
through group-theoretic methods'; such an anal-
ysis depends on the symmetry properties and
not on the details, such as the exact nature of
chemical kinetics, of the system. This proce-
dure has been extended ' to the consideration of
the effects of small symmetry-breaking factors
on the nature of bifurcation. It has been pointed
out that nonequilibrium systems can become ex-
tremely sensitive and that this sens~tI', vity may
be characterized by general. expressions. ' This
type of sensitivity can arise in several ways in
dissipative structures. "' Here we discuss such
sensitivity in the context of chiral-symmetry
breaking and illustrate the phenomenon using a

simple model.
We consider the synthesis of a molecule that

could be left- or right-handed in the absence of
any chiral influence. When such a chemical sys-
tem is'near equilibrium both types of molecules
will. be produced in equal. amounts. When the
system is sufficiently far from equilibrium, how-
ever, there could result a state in which the con-
centrations of the left- and right-handed mole-
cules are unequal. " We might expect such sym-
metry breaking, for instance, when there are
autocatal. ytic effects.

Let X -=(x~, xn, x„.. . , x„) denote the concen-
trations of the n reactants, x~ and x~ being the
concentrations of the left- and right-handed spe-
cies, respectively. For simplicity, we assume
that the other molecules, x„.. ., x„, have no
chiral. ity. We denote the kinetics by F(X, X), X

being a parameter that denotes the nonequilibrium
constraint on the system (typically, it is the con-
centration of one of the reactants that is main-
tained constant). The equation of the system is

dX jdt = F (X, A).

Since we assume that I has no chirally selective
kinetics, it must be covariant under the inter-
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-A o.'+ B(X —X, )o.' = 0. (2)

Here A and B are positive coefficients that can
be computed from the kinetics F with the wel. l-
known methods of bifurcation theory (see Refs.
1 and 3, for example); their expl. icit form will
be given below. For A. &A.„there are two non-
zero solutions: n=+[(B/A)(X —X, )]"'; in one

x~ & x~ and in the other x~ & x~. Which one of
these states will be realized is not determined
by the processes specified in Eq. (1). It is in

this situation that small influences, which are
normally ignored because their interaction en-
ergy is small, play a significant role.

We suppose now that there is a small. pertur-
bation present that alters the energies of the
reaction intermediates in the synthesis reaction.
Thus, taking the kinetic constants to have the
Arrhenius form A. = Ce ~~"~, when E, is the
height of the reaction barrier the molecules must
overcome, we suppose that the intermediates in
the formation of the right- and l.eft-handed pro-
ducts differ in energy by a small amount AE;
thus F-~ =E~+&E. Then the kinetic constants K~
and K~ will. differ by a factor e '—- 1-g when
g= (AE/kT), as aE/kT«1. Thus K~ =K~(1 -g).

Since K~-K~ under parity inversion P, we
must have Pg =-g. The equation of the system

change of x~ and x~. If we define a parity oper-
ator P, then P(x~, x„,x„.. ., x„)= (x~, x~, x„
. . ., x„), and we must have PF (X, X) = F (PX, X).
(Here we assume that X is unaffected by P.) Thus
F is covariant under the group 9 =(e,-P)I, e being
the identity element. It follows that if X is a
solution of Eq. (1) then PX is also a solution.
When the system is near equilibrium the solution
is symmetric, i.e. , PX= X. The kinetics F
could be such that when A. & X, the steady-state
solution is symmetric but, for X& A„ the solu-
tion is asymmetric, i.e. , Pxtx; then Eq. (1)
has two solutions, X and PX, that bifurcate at
the critical value X, . If we denote the symmetric
solution by X~, then the bifurcating solution will
be of the form" X = X,+ &X~, where X~ is the
antisymmetric part, i.e. , PX~ = -X~. The "am-
plitude" n is determined by the bifurcation equa-
tion. The general form of this bifurcation equa-
tion may be determined from the condition that
it must be covariant under the group 9 and that
n = 0 must be a solution. ' In our case the group
has only two elements and the covariance should
be satisfied for Pe= —n and it is easy to see
(see Ref. 3 for the general procedure) that the
bifurcation equation is of the form

now contains the parameter g and is of the form

dX/dt = F (X,g, X) (3)

and PF (X,g, A. ) = F (PX, -g, X). Using this sym-
metry property of g one can show that' ' the cor-
responding bifurcation equation is of the form

-A+3+ Bn(A —X, ) + g C = 0. (4)

g, =0

FIG. 1. Change in the bifurcation diagram due to
symmetry-breaking interaction g.

The effect of the symmetry-breaking perturba-
tion g on the bifurcation diagram is shown in
Fig. 1. Because of the chiral asymmetry in the
kinetics the two branches are separated. As a
consequence, as X increases, depending on the
sign of (gC), the system will. evolve preferen-
tiall. y into one branch and not the other, unless
there is a large enough fluctuation that knocks
it to the other branch. The effectiveness of this
macroscopic selection depends on the minimum
separation

s = —', (4Cg/A)"'=2(4C/A)"'(b. E/kT)'"

The usual equilibrium factor ~/kT «1 appears
here with an exponent —,

' because of the nonequi-
librium nonlinearity in the system.

Since the fluctuations are inherent in a thermo-
dynamic system, the effective chiral selectivity
of g depends on the probability distribution of n.
For almost all nonequilibrium systems (in par-
ticular the model we consider below) there is a
critical. slowing down and a separation of time
scales. ' " For such systems we obtain an equa-
tion for the time evolution of o. (the slow mode).
To this equation we add a term ~"'F(t), repre-
senting the fluctuations, to obtain the Langevin
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equation:

dn/dt = -A n'+Bn(~ -~, )+ g C+ ~"2F(t). (5)

We assume that F (t) is Gaussian white noise.
The exact value of e depends on the kinetics"
but its order of magnitude is (VNA) ', where V
is the volume and XA the Avagadro number. The
probability distribution P(n) can now be obtained
by use of the Fokker-Planck equation':

P(n) = N exp ([-—,A n '+ —,'B(A. —A.,)n'+g Cn ]/—;~j.

The maxima of this distribution correspond to the
steady states of (5), which are the same as the
solutions of the bifurcation equation. From this
distribution the order of magnitude of chiral se-
lection due to g can be obtained as fol.lows. If
X passes through the critical. point X, sufficiently
rapidly in comparison with the branch-to-branch
switching time, then the system will essential. ly
remain on one branch and there will be very ef-
fective sel.ection. If X is varying very slowly,
maximum switching wil. l occur at the point of
least separation. The probabil. ity of evol.ving
into one of the branches depends on the relative
time spent in that branch. We may take the value
of P(n) at its maxima as the measure of the rel-
ative time spent in each branch. At the point
where the separation s is minimum, A. —Z,

= (AC'/4)"'(&/B)g"'. If n, and n, are the val-
ues of e at which P has its maxima, then it can
be shown that P(n, )/P(n, ) = exp(- 2g4" &/e) where
& = —,", (4C /A. )"', i.e., a term that depends on the
kinetics. We can expect extremely good selection
if the exponent 2g+'6/e- 10. With this criterion
for observable effects we have the condition ~/
kT) (5/6)'~'(1/VN„)'~' where we have used the
order-of-magnitude value of c and the fact that
g=t E/kT.

To obtain a possible order of magnitude of ~,
we consider the fol.lowing scheme of reactions:

Kg++ B = +L,(B)~K g

K2
L,(B) — g(B) ~

K 2

(7a)

(7b)

IC3
x~+ x~ D.

(Here, and in the equations below, x~&» means
that x~ could be replaced by x~.) In this scheme
the autocatalytic reaction (7b) is to be thought of
rather as an effective reaction that represents a
more complicated set of reactions. We assume
that the concentrations of A and B are maintained
constant by a suitable supply. Reaction (7c) de-
notes the removal of the products which, together
with the suppl. y of A. and B, maintains the system
far from thermodynamic equilibrium. Such a
system is described by the kinetic equations

dXg(Q ) 2-=K~AB -K ~x~(~)+K2X~(~)AB -K 2X~(J, )
—K3 (8)

In this set of equations AB is the bifurcation parameter corresponding to X. With the condition K3
& K „this scheme of reactions exhibits all the features discussed above. It is convenient to write Eq.
(8) in variables u —= (x~ -xs)/2 and v=—(x~+xs)/2. Solving the algebraic equations for the steady states
(dx~&» /dt =0), one can easily see that there is a critical. value (AB)„below which the steady state is
symmetric, i.e. , u =0, and above which it is asymmetric, uc 0. The critical value is

(AB) = [s + (s —4~ 2' )"2] /2K

where

s = 2y,Z, + 4 [R','Z', /(Z', —If,)].
For numerical estimates we give the following order-of-magnitude values for the kinetic constants:
K, =10 ' mole ' s ', K, =10 s ', K,=10 mole ' s ', K, =10 mole ' s ', and K, =10 ' mole '
s '. If we now introduce the symmetry-breaking term g, the kinetic constants for x~ and x~ will. differ
by a factor 1-g. To compute the chiral selectivity we need the coefficients A and C of Eq. (4). These
can be obtained through the weU. -known methods of bifurcation theory (see, for example, Refs. 1, 7,
and 8). The explicit expressions in terms of the kinetics F are
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Here I', and X, are the components of the vec-
tors E and X of Eq. (3). p,. and q&,.* are the null
eigenvectors of the Jacobian matrix I'„,"=-. BF„/
BX,. and its adjoint, respectively, evaluated for
the symmetric steady states at the critical. point,
g=0, A. = X,. The subscript 0 denotes that all
the derivatives are evaluated at X = A.„g=0.
It can be shown that

is orthogonal to p*. On the subspace orthogonal.
to p*, (E") ' is well defined and h =(E*) 'y.
With these expressions e can be calculated. It
is found that 6 -10 if the weak-interaction effect
is included in K, and K» and 6 = 10 if it is in-
cluded only in K,. In the vicinity of the critical
value X, , the growth of n is slow (as can be
easily checked) and diffusion keeps the system
homogeneous over macroscopic volumes. Hence
letting V-10 ' L, we obtain the condition for
s«ection: «/» 1o "when ~ —10 and bE/»
~ 10 "when e-10 '

A possible source of the 4E is the predicted
weak-neutral- current energy diff erence between
right- and Left-handed molecules. (We are ac-
tual1. y considering a ~E between reaction inter-
mediates. This should be at least of the same
order of magnitude as bE for molecul. es.) Di-
mensional considerations lead to an estimate of
4E- Go. Z',"where G is the Fermi coupling
constant, a the fine-structure constant, and Z
the atomic number of the chiral-center nucleus.
Since ~ must in reality vary with the degree of
asymmetry, Hegstrom, Rein, and Sanders" de-
fine a molecular asymmetry factor g by AE
=qGn'Z'. Zel'dovich, Saakyan, and Sobel'man"
estimate bE =hxl04x(Z/100)' =7x10 "Z' erg,
corresponding to q = 2&10 '. Hegstrom, Bein,
and Sanders calculate ~E for two specific molec-
ular groups, finding b.E= 9x10 "erg (for Z=6)
and bE= —9x10 "erg (for Z=16) which corre
spond to p = 3 x 10 and q = 3 x 10 ', respectively;
these authors note that g could be larger for other
molecules. We note here that it is not necessary
to assume that the chira1. center is carbon; for
example, for a reaction catalyzed by a metal ion
complex the chiral center could be the metal ion,
so that Z could be much larger: 45 for the case
of rhodium, an important catalyst for chiral-
specific reactions. " If we set Z =45 the esti-
mates g = 2x10 2 and 3x10 correspond to val-
ues of bE/AT (for T = 300 K) of 3x10 " and 6
x10 ", respectively; for Z = 6 we get bE/kT
values 1x10 "and 2x10 ". On the other hand,
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estimates of bE/kT for macroscopic chiral in-
teraction due to electric, magnetic, centrifugal,
and gravitational fields give an upper bound of
10 ".""These estimates, compared with the
results of our calculation above, suggest that in
spite of the extreme smallness of mol. ecular weak
neutral current effects, the possibility of their
determining the macroscopic chirality of a sys-
tem cannot be entirely ruled out.
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