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throughout which effective-range theory might be
expected to be good. '

From associating the Am resonance with the KN

s state, it follows that if we can measure the
orbital angular momentum of the An (or the reso-
nant Zz state) the KAN (or KEN) parity will be
measured. One possibility of determining lA is
from the A polarization. Referring to (1), we
measure 8 from the perpendicular to the plane
of production of the resonant Ag and the spectator
particle, and consider s» and p», Av systems.
If P is the degree of polarization of the resonant
systems, the A polarization is

s~, : P

p», P(cos'8 - sin'8).

Of course P depends on the production mechanism,
angle, and energy: One may not readily find a
situation with large P.

A different possibility is to look at the energy
dependence of I o. I

' over the resonance. The Zp
threshold is very favorably located close to the
resonance, so that with any detailed data, s- or
P-wave resonances could be distinguished. The
present data already provide some indication of
the KZN parity. Experimentally, '

l a i' is found
to be roughly 1 at the KN threshold, whereas
averaged over the resonant region, '

) n )'«1.
Theoretically, we have from (4),a in first approx-

Thus, from (8), we find that In I' decreases from
its value at the KN threshold to that at the peak of
the resonance by a, factor of 2 for l~ = lA =1 (even
Kl'N parities). On the other hand, if we con-
sider l~ =0, l u I' remains essentially constant
in this energy region, which may be in disagree-
ment with experiment.
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We wish here to outline an approach to the
theory of strong interactions, based on the Man-

delstam representation, that treats high- and
low- energy phenomena in a unified manner. Our
approach, which will be described in detail else-
where, extends somewhat the original program
proposed by Mandelstam. ' The most striking
achievement thus far is the inference, from the
observed constancy of high-energy total cross
sections, that in the low-energy elastic region

the P-wave interaction should be strong; at the
same time, bound states or large low-energy
phase shifts for J) 2 seem inconsistent with the
theory. Furthermore, the divergence difficulty
encountered by Chew and Mandelstam' in hand-

ling low-energy P resonances appears to be re-
moved by the Pomeranchuk relation' between
high-energy particle and antiparticle cross sec-
tions.

We use the pion-pion interaction to illustrate
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FIG. 1. The Mandelstam diagram
for elastic xx scattering. In a phys-
ical region the variable indicated is
the square of the barycentric-system
total energy —in pion mass units.
The assignment of locations to p&,

p2, and p3 corresponds to the ampli-
tude A(s, t, u) of reference 4. Cor-
responding assignments for B(s, t, u)
and C(s, t, u) are obtained by inter-
change of channel labels. 4
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our approach, although it will be clear that the
essential features may be generalized. Figure 1
shows the Mandelstam diagram for mg elastic
scattering, where the variables s, t, and u have
the usual meaning. ' The wedge-shaped physical
regions are labeled as such, and the shaded
areas indicate where the double spectral func-
tions fail to vanish. Our central assumption is
that the double spectral functions in the heavily
shaded areas dominate those parts of the physi-
cal regions whose distance from a boundary is
of the order of magnitude of the width of the
heavily shaded strips, i.e. , 16 pion mass units
(squared). This gives us a theory that covers
not only low energies but arbitrarily high ener-
gies with low momentum transfer.

The above assumption seems a priori reason-
able on the usual geometrical grounds, but in
addition it is fortified by two empirical circum-
stances. First, total cross sections generally
are largest in the low-energy elastic region.
Second, diffraction peaks in elastic scattering
are always observed in the forward direction at
high energies. The latter means, for example,
that near the right-hand boundary of the upper
physical region in Fig. 1 (the s region) the quan-
tity, ImA(s, t), for s large and fixed, falls off
sharply as t decreases from zero (forward di-
rection). The width of the diffraction peak in NN

and mN scattering corresponds to b, t -20, and it
will be surprising if the same is not true for mm

scattering as well as for other strongly interact-

ing particle combinations. Now, we have

ImA(s, f) -—1,p(t', s)

so a t dependence of the kind required for diffrac-
tion implies a concentration of the double spec-
tral function within a distance from the boundary
of the order bt. Such a concentration in the
double spectral region labeled p, in Fig. 1, when

applied to the t channel (the lower right-hand
physical region), is in agreement with the first
of the above-mentioned empirical circumstances,
i.e. , the largeness of total cross sections at low
energy. We shall return to this point at the end
of this Letter.

Fortunately, the double spectral functions in
the heavily shaded areas are determined by re-
latively tractable elastic unitarity conditions, as
first pointed out by Mandelstam' and recently
re-emphasized by Cutkosky. s Because of space
limitations we do not write these conditions here,
although they will play a central role in actual
dynamical calculations. Suffice it to say that in
the gp problem there are three distinct "strip"
functions to be calculated, which we have indi-
cated in Fig. 1 as p» p2p and p3 Each of these
is determined exactly in the strip regions by an
integral over bilinear combinations of absorptive
parts of elastic amplitudes. It is only in the in-
terior regions that inelastic amplitudes explicitly
play a role.
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In his original paper' Mandelstam stated the
opinion that attempting to calculate the parts of
the double spectral function on which we are now

focusing attention is not worthwhile because in-
elastic effects are implied, in contradiction with
the basic approximation, which is elastic. We
believe that there is no inconsistency; the elastic
unitarity condition is to be employed only where
it is correct, in order to calculate double spec-
tral functions in the strip regions. Inelastic
scattering is not calculated completely, but that
part occurring at low momentum transfers (im-
plied, for example, in the s physical region in
Fig. 1 by the existence of p,) shouldbe well ap-
proximated.

It is worthwhile digressing momentarily to re-
late these ideas to those recently expressed by
Salzman and Salzman' and by Drell, ' as well as
by Pomeranchuk. ' If we focus attention on the s
physical region of Fig. 1, the double spectral
function p, corresponds to diagrams in which
only two particles are present in intermediate
states but any number may be exchanged. In
other words, p, is calculated from the Cutkosky
diagram' shown in Fig. 2(a) and represents
purely elastic effects in the s channel. Qn the
other hand, p, is calculated from diagram 2(b),
in which any number of particles are allowed in
intermediate states but only two are exchanged
(it is elastic in the f channel). Obviously, then,
we are calculating here the diffraction scatter-
ing associated with inelastic transitions in which
a single pion is exchanged. This is just the
mechanism of Salzman and Salzman, Drell, and
Pomeranchuk. We believe that our approach is
more systematic, since it raises no questions it
cannot answer about cross sections in unphysical

regions; however, we can only discuss total
cross sections and elastic scattering, not the
distribution of inelastic events.

Returning to the main argument, we now con-
sider a second postulate: that total cross sec-
tions for strongly interacting particles asymptot-
ically approach constants at very high energies.
Even within the scheme of approximation pro-
posed here we believe that our combined require-
ments of unitarity and analyticity are inconsist-
ent with total cross sections that increase inde-
finitely with energy. In any event, such a situa-
tion seems nonsensical and would, we believe,
be impossible if unitarity were completely en-
forced. On the other hand, there are almost
certainly solutions, such as the S-dominant solu-
tions discussed by Chew, Mandelstam, and
Noyes, ' for which the asymptotic behavior of the
double spectral functions implies a total cross
section vanishing strongly at infinity. This al-
ternative also we reject as unreasonable, feeling
that a characteristic of strong interactions is a
capacity to "saturate" the unitarity condition at
high energies for those states that overcome the
centrifugal barrier. Such a saturation should
lead to a constant total cross section.

We add a final related postulate, that the first
diffraction peak approaches a constant limiting
shape at very high energies, and thus we arrive
at the general assumption':

lim ImA(s, t)-sf(t).
S~ oo

-20&t&0

From Fig. 1, this is equivalent to

1 pm t', s
lim — ' ' dt' sf(t),t'- tS~ oo

-20& t&0

which seems unnatural unless

lim p, (t, s) sp, (f).
I

S
4&t& 20

(a}
FIG. 2. The two Cutkosky diagrams needed to cal-

culate the double spectral functions in the strip re-
gions. p (f) = p, (f).

L L,
(4)

Although limit (3) cannot be said to follow strictly
from limit (1), we adopt (3) as the basis for fur-
ther argument. Similar reasoning can be em-
ployed for p, (t, s) and p, (t, s) to define p,~(t) and

p, (t). Then we borrow Pomeranchuk's argu-
ment' about consistency of the fixed t dispersion
relations to conclude that
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This equality corresponds to the statement that
the total (m+m ) and (m+m+) cross sections become
asymptotically the same.

It is important to remark that the behaviors (3)
and (4) appear to be consistent in the strip re-
gions with the integral unitarity conditions which
are to be used to calculate the double spectral
functions. Thus we believe that we shall be able
to find solutions of our equations satisfying these
conditions. How many free parameters are pre-
sent in such solutions we shall not know until
further study has been made of the consistency
of our equations in the interior regions where
they are not exact and where a cutoff probably
will be needed.

We close by pointing out that condition (3),
when the substitution law is invoked, implies
that amplitudes at low energy are asymptotically
proportional to tas t-~. Thus, regardless of
how many parameters are allowed, S-dominant
solutions are ruled out and a strong interaction
in the I' wave (and no higher waves) is implied. "
[At the same time, condition (4) appears to elim-
inate the inconsistency encountered by Chew and
Mandelstam' when they attempted to ignore the
double spectral functions in a consideration of
P-dominant solutions. ] It seems, therefore, that
one has in these considerations the beginning of
an understanding of why strong interactions are
so uniform in their manifestations: One may
conjecture that the defining characteristic of
strong interactions is that they are "as strong as
possible. " The consequence from such a state-
ment of a constant behavior for cross sections at
high energies has always been plausible. Now

we see that at low energies it appears inconsist-
ent with general principles to have interactions
so strong as to produce resonances or bound
states for J ~ 2. The "strongest possible" inter-
action should, however, produce large low-
energy I' phase shifts. There remains an open
question, of course, as to what extent one can
determine the precise interaction strength on

the basis of the "strip approximation" proposed
here.
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In reference 1 Mandelstam discusses the relation
between asymptotic behavior in t and the strength of
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T. Regge, Nuovo cimento 14, 951 (1959), and Univer-
sity of Rochester Physics Department preprint,
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are correspondingly absent. Although Regge's work is
confined to potential scattering, we feel confident of
the generality of this connection between asymptotic
behavior in t and the maximum l that interacts strongly.
%hen spin is present, of course, the connection will
be slightly more complicated.


