ELECTRON SCATTERING FROM THE PROTON*

F. Bumiller, M. Croissiaux, ${ }^{\dagger}$ and R. Hofstadter
Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received August 25, 1960)

We have recently put into operation a new large double-focusing magnetic spectrometer capable of analyzing electrons or other singly-charged particles up to a momentum value of $1000 \mathrm{Mev} / c$. This spectrometer is of the 180° type previously used in this laboratory and has a mean radius of curvature of 72 in . We have employed this spectrometer in electron-scattering work on the proton between incident electron energies of 650 Mev and 900 Mev and between scattering angles of 45° and 145°. A typical value of the solid angle employed in detecting electrons is 5.6×10^{-3} steradian. The higher energies ($>650 \mathrm{Mev}$) have been realized by virtue of the recent extension in the length of the Stanford linear accelerator.
The $72-\mathrm{in}$. spectrometer forms part of a twomagnet system; the second part is the $36-\mathrm{in}$. spectrometer described previously. ${ }^{1}$ Figure 1 is a schematic drawing of the two spectrometers in a position in which they are 120° apart. Both spectrometers are arranged so that they can be rotated independently about a common scattering center. We have taken data simultaneously with both spectrometers, usually employing the $36-\mathrm{in}$. magnet at large angles, e.g., up to 145°. The $36-\mathrm{in}$. spectrometer can handle scattered electrons only up to $500 \mathrm{Mev} / c$ without excessive deterioration of focusing and we have used the $36-i n$. spectrometer in these experiments only in the very safe region below $370 \mathrm{Mev} / c$. Such a procedure limits, and has limited in the past, the ability of this spectrometer in obtaining scattering data at high energies and small angles, ${ }^{1,2}$ i.e., in those circumstances where the

FIG. 1. The double spectrometer system used in these experiments.
energy of the scattered electron is high.
We have begun to carry out a series of experiments on the proton at various energies and angles with these spectrometers. In both instruments we used Čerenkov counters as detectors. In. Fig. 2(a) we show a typical electron-scattering

FIG. 2. (a) Electron-scattering peak obtained with a $0.237-\mathrm{in}$. polyethylene target at an incident energy of 900 Mev and a scattering angle of 75°. The target was at 45° with respect to the incident beam. (b) Same except parameters are $850 \mathrm{Mev}, 145^{\circ}, 36-\mathrm{in}$. spectrometer, and target at 0°.
peak obtained with the $72-\mathrm{in}$. spectrometer at an incident energy of 900 Mev and a scattering angle of 75°. The target material was polyethylene and we have subtracted the carbon background in analyzing the data to obtain the protonscattering peak. The carbon data were obtained in the same run with a separate graphite target. In Fig. 2(b) we show a corresponding peak obtained in the $36-\mathrm{in}$. spectrometer at 850 Mev and 145°.
The cross sections obtained in this work are absolute cross sections and are based on the readings of the Faraday cup shown in Fig. 1 which gives the number of electrons in the main beam. The secondary emission monitor was an adjunct used as a monitor for the $72-\mathrm{in}$. spectrometer and was calibrated during each run with reference to the Faraday cup. The Faraday cup was the same unit used in previous experiments. ${ }^{2}$ In our present experiments the vacuum pipe leading to the Faraday cup was not used.
It is difficult at the present time to estimate the errors associated with our absolute cross sections. The main uncertainty is the detection efficiency of our Čerenkov counters. These counters have been tested carefully but it is still possible that a 10% or smaller error remains in our efficiency measurements. Our efficiency measurements differ very little from 100% and we have therefore used this figure as the detector efficiency. Statistical errors are usually small compared with possible systematic errors and perhaps a measure of our errors should be the differences between individual measurements made under the same conditions of energy and angle. These differences are always less than $\pm 10 \%$. Another small source of uncertainty is the value of the dispersion constant of the 72 -in. spectrometer. We have measured the dispersion constant to an accuracy of about 5%.
Our results are presented in Table I and include standard radiative corrections. ${ }^{1}$ In addition to the cross sections in the Table we give the values of the square of the momentum transfer. In many cases we have given a single value ás an average of several measured cross sections. As a general rule we believe our results are accurate to about $\pm 10 \%$ because of the aforementioned possible errors. Relatively speaking, errors are probably less than $\pm 5 \%$. Our interpretation of the above results will be given in an accompanying paper. ${ }^{3}$
We understand that the Cornell group ${ }^{4}$ is investigating the same electron-scattering problem.

Table I. Summary of results.

E $($ Mev $)$	θ (deg)	q^{2} $\left(\right.$ fermi $\left.{ }^{-2}\right)$	$(d \sigma / d \Omega) \times 10^{33}$ $\left(\mathrm{~cm}^{2} / \mathrm{sr}\right)$
597	60°	6.96	67.9
597	90°	11.20	8.76
597	120°	14.06	2.65
650	135°	16.97	1.51
700	60°	9.16	38.0
700	75°	12.01	11.2
700	135°	18.90	0.955
700	145°	19.43	0.778
750	45°	6.86	136
750	75°	13.45	10.0
750	90°	16.06	4.08
750	135°	20.86	0.728
750	141.5°	21.24	0.735
750	145°	21.42	0.580
775	135°	21.86	0.644
800	45°	7.70	104
800	60°	11.53	23.5
800	75°	14.93	8.19
800	90°	17.75	2.99
800	120°	21.64	0.888
800	135°	22.86	0.605
800	145°	23.44	0.360
850	45°	8.59	80.6
850	60°	12.77	1.8
850	75°	16.46	5.62
850	120°	23.60	0.711
850	135°	24.88	0.509
850	145°	25.50	0.371
875	40°	7.56	127
875	45°	9.05	82.0
875	60°	13.42	15.7
875	145°	26.54	0.376
900	45°	9.51	61.5
900	60°	14.06	14.3
900	75°	18.03	5.35
900	90°	21.24	2.09
900	145°	27.58	0.347

Unfortunately we have no firm data of that group to compare with our results.

We wish to acknowledge most gratefully the cheerful cooperation and assistance we have received from D. Aitken, P. Auvil, C. Buchanan, G. Burleson, B. Chambers, H. Collard, E. Dally, P. Gram, T. Janssens, M. Ryneveld, and W. Wadensweiler.

[^0]mission, and by the U. S. Air Force, through the Office of Scientific Research of the Air Research and Development Command.
\dagger Visitor from University of Strasbourg, Strasbourg, France.
${ }^{1}$ E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).
${ }^{2}$ R. Herman and R. Hofstadter, High-Energy Elec-
tron Scattering Tables (Stanford University Press, Stanford, California, 1960), and the work of F. Bumiller and R. Hofstadter shown in Fig. 8 of this reference.
${ }^{3}$ R. Hofstadter, F. Bumiller, and M. Croissiaux, following Letter [Phys. Rev. Letters 5, 263 (1960)].
${ }^{4}$ K. Berkelman and J. Cassels (private communication).

SPLITTING OF THE PROTON FORM FACTORS AND DIFFRACTION IN THE PROTON*

R. Hofstadter, F. Bumiller, and M. Croissiaux \dagger
Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California

(Received August 25, 1960)

Electron-scattering studies of the proton obtained in the last few years have been summarized recently. ${ }^{1}$ The measurements showed that the proton form factors (F_{1}, F_{2}) were less than unity, implying a finite structure, and lay in a region in which they were approximately equal to each other at momentum transfers (q) as high as $q^{2}=9.3$ in units of squared inverse fermis. At this value of the momentum transfer the measured ratio was $F_{1} / F_{2}=1.23 \pm 0.20 .^{2}$ The experiments were confined to angles larger than 60° at the highest energies then obtainable (650 Mev) because of the limitation imposed by the energy-handling ability of the $36-\mathrm{in}$. spectrometer. It was therefore not possible to solve for F_{1} and F_{2} separately at values of $q^{2} \geqslant 9.3$. Several independent experiments ${ }^{2},{ }^{3}$ indicated that the F_{1} values were slightly greater than the F_{2} values at the same momentum transfer, but for simplicity and ease of calculation, in the past, the ratio of form factors was usually taken to be
unity.
We have now succeeded in splitting apart the two proton form factors. Because of the great interest in the proton form factors and because our data appear to be internally consistent, we wish to present in this paper some conclusions drawn from the experimental results given in the accompanying paper. ${ }^{4}$

Our procedure has been to solve for the separate form factors (F_{1}, F_{2}) at conditions lying between $7.7 \leqslant q^{2} \leqslant 25$ by choosing a pair of experimentally measured cross sections at the same value of q^{2} but at different correlated values of energy and angle. We have used the method of intersecting ellipses ${ }^{5}$ to find the form factors.
Table I shows the values selected and the form factors found by combining the results. In a few cases, indicated by asterisks, we have used older data and combined the older values with the newly-measured cross section at the same value of q^{2}. In two cases ($866 \mathrm{Mev}, 75^{\circ} ; 675$

Table I. Form factors F_{1} and F_{2}.

$q^{2}\left(\mathrm{f}^{-2}\right)$	$E_{1}(\mathrm{Mev})$	$\theta_{1}(\mathrm{deg})$	$(d \sigma / d \Omega)_{1}\left(\mathrm{~cm}^{2} / \mathrm{sr}\right)$	$E_{2}(\mathrm{Mev})$	$\theta_{2}(\mathrm{deg})$	$(d \sigma / d \Omega)_{2}\left(\mathrm{~cm}^{2} / \mathrm{sr}\right)$	F_{1}	F_{2}
7.70	800	45°	1.04×10^{-31}	400	124°	${ }^{*} 1.06 \times 10^{-32}$	0.520	0.490
9.16	700	60°	3.80×10^{-32}	464	135°	${ }^{*} 6.26 \times 10^{-33}$	0.500	0.420
11.50	800	60°	2.35×10^{-32}	500	135°	${ }^{\circ} 4.18 \times 10^{-33}$	0.451	0.341
14.06	900	60°	1.43×10^{-32}	597	120°	2.65×10^{-33}	0.423	0.214
16.97	866	75°	5.56×10^{-33}	650	135°	1.51×10^{-33}	0.430	0.160
18.03	900	75°	5.35×10^{-33}	675	135°	1.23×10^{-33}	0.451	0.108
21.24	900	90°	2.09×10^{-33}	750	141.5°	7.35×10^{-34}	0.405	0.087

[^0]: *This work was supported in part by the Office of Naval Research and the U. S. Atomic Energy Com-

