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and

7=(u+1)y (1+ P24 2uyy) 2= (UM +pTVE),  (T)

in the same approximation as above.
Hence, at large energies we would expect

Y1/, 6.67, (8)

and
y=1.49. 9)

At low energies (say, v.<T7 or y,<100), both
y,/-y2 and y rapidly decrease and approach unity.
According to the above ideas, an analysis has
been made of 78 jets (p, n, and a events)'* meas-
ured in the Prague Laboratory. The results are

shown in Table I. The agreement between the
expected and the observed values and their trends
is obvious.

Further applications of this method may be
thought of for the case of nucleon-nucleus and
nucleus-nucleus collisions, where peripheral
interactions are expected to be sometimes super-
imposed on head-on nucleon-nucleon collisions.

The author is very indebted to Dr. J. Pernegr,
who kindly put at his disposal detailed data of the
jets recorded and measured in the Prague part of
Po-Stack No.1.
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I wish to report a proof that the Mandelstam
representation® for a scattering amplitude is
valid for every term in the perturbation series
for the amplitude. The proof applies to any sys-
tem of interacting particles that does not have
anomalous thresholds. The latter requirement
can be expressed by the mass conditions obtained
in fourth order. In this Letter I will outline the
main steps of the proof, using the equal-mass
case as an illustration. The details are con-
tained in two papers?s® in the course of publica-
tion and a third* shortly to be submitted.

The invariant energies squared will be denoted
s, t, and u; a term in the expansion of the ampli-
tude A(s, t) will be written F(s, ). The main
steps include the following:

(1) The physical branch of F in a physical scat-
tering region has the representation

F(s,t)
: o1 -Se @] 2
=limitcj dal- ceda =37
e~0 % D (e, 5,01

where we have (I, Sec. 6),2

D (a,s,1)=5f (a) +tg(a) - m*K(a) +ieC(a)Da,
 =D(a, s,t) +ieC(@)Da,.

Singularities (i.e., branch points) of F will occur
when D¢ has end-point zeros or coincident zeros
(pinching the integration contour) in each o vari-
able as € approaches 0. End-point zeros can be
reinterpreted by using reduced diagrams.

(2) D(a, s, t) is negative for real positive a in
the region s>0, >0, «>0. Hence F is real in
this region [I, Secs. 4 and 8 (F)].

(3) The only straight lines of singularities of
the physical branch of F are normal thresholds,
since they must intersect a physical scattering
region (I, Sec. 5).

(4) Curves of singularities I'(s,?) of F in the
real s, ¢ plane have slope (I, Sec. 7)

dt/ds =- f(a)/gla),

and they have normal thresholds as asymptotes.
(5) From (2), (3), and (4) it can be shown (III)*
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that there are no singularities in the region
s<4m?, t<4m?®, u<4m?, and that D is negative
and F real in this region. It also follows that no
curve of singularities enters the real s, plane
in the region -4m?<t<4m?.

(6) A single-variable dispersion relation in s

can be proved (III) for ¢ real and with (-4m?<?t<4m?),

by noting that for s>4m? and real o we have
D(a, s +i€, t)#0.

We obtain the correct physical branch of F(s, t)
in the physical region s>4m? by defining it from

F(s,t)

n-27-1
)

1 o(1 -Zai)[c(a ]
=1imitcj dal---dan 37
-0 7, ' [D(a,s+i€,t)]n

No distortion of the real o contours is necessary
except in the limit as € approaches 0. This proves
that F(s,t) has no singularities in the upper half
s plane when ¢ is real and in (-4m?<t<4m?). It
also defines the physical sheet of the complex
variable s.

(7) If a diagram, or reduced diagram, has its
first thresholds at s=a, t=b, u =c, the limits
+4m?® in (5) and (6) can be extended to suitable
combinations of @, b, and ¢. The discussion be-
low can then be carried through by using these
limits.

(8) The curves of singularities I'(s, ¢) defined
by ¢ =#(s), with s and ¢ real, will lie on surfaces
of singularities Z(s, ). These will be singulari-
ties of some analytic continuation of F. Our
problem is to prove that none of these surfaces
correspond to singularities on the physical sheets
of s, £, and u. This can be done by proving that
(a) in the region s>4m?, t>4m?, all curves of
singularities have negative slope, and (b) there
are no disconnected complex singularities in the
physical sheet (II).3

(9) There are two alternative methods which
give these results. I will illustrate the first (III)
by examining the continuation of F (s, ¢) past ¢ =4m?
along any path in the upper half of the s plane and
with £=£, +ie. A path of this type leads to the
physical branch of F in a physical region, and it
lies on the physical sheet. If no such path meets
a singularity of F', our required result is true.

If the path does meet a singularity, it may be
either a disconnected complex singularity or a
complex singularity coming from a spurious turn-
ing point. By continuity, the latter must occur
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at a minimum of ¢ along a curve of singularities,
since these curves cannot disappear from the
physical sheet except asymptotically through
normal thresholds. If any path meets either type
of singularity, choose the singularity on the phys-
ical sheet for which ¢, is nearest to 4m?, if pos-
sible. But we can then trace the singularity along
its related singular surface Z on the path s, +is,
=s(t, +i€) to smaller values of ¢, until ¢, is less
than 4m®. This path does not meet either ¢ =4m?
or s =4m?®, since for finite ¢, the function F(s, +is,,
t, +i€) is analytic near these thresholds. Letting
€ tend to zero, we obtain a contradiction of our
single-variable dispersion relation below ¢ =4m?,
This proves our required result that there are no
spurious turning points and no disconnected com-
plex singularities.

(10) The second method (III) uses the elegant
device of analytic completion.® The result of
Sec. (6) is first extended to show that F(s, ¢, +i€)
is analytic for s in the upper half plane. Then
we define, for ¢, <4m?,

F(s, t, +i€) __I F(z,t, +i€)dz +ze)dz ’

where C is a semicircle in the upper half plane.
The contour C can now be displaced in the com-
plex s, ¢ space by continuously increasing ¢,.
Provided the contour does not meet any singular-
ities, this procedure defines an analytic continu-
ation in the upper half s plane for all real posi-
tive values of #,. There are no anomalous thres-
holds, and the contour is not distorted near the
normal thresholds since near these F(s, +is,,
¢, +i€) is analytic. Spurious turning points (min-
ima in #) and disconnected complex singularities
cannot exist, since they would lead to horns ex-
tending into the volume swept out by C. This
proves that the analytic completion we require is
possible. The curves on which F(s, +i€’, ¢, +i€)
is singular, as € and €’ tend to 0, will have nor-
mal thresholds as asymptotes and will have nega-
tive slope.

(11) A similar discussion (III) shows that
F(s +ie, t -ie’) analytically continued from the
real region is not singular for s>4m?, ¢>4m?
except in the limit €, €’ - 0. In this limit it is
singular only at the normal thresholds and not
on the curves of singularities. Thus where the
slope of T' is negative, it extends to T only at
points s +i€, ¢ -ie’ that lie in nonphysical sheets.

(12) From (10) and (11) a double application of
Cauchy’s theorem is possible (II) and establishes
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the validity of the Mandelstam representation for
every term F in the perturbation series for the
amplitude A.

I am indebted to Mr. J. Nuttall and Dr. K. Sy-
manzik for valuable discussions. I wish also to
thank Dr. J. C. Polkinghorne for an outline of his
work (in collaboration with Mr. P. Landshoff and
Dr. J. C. Taylor) on a different approach to a
proof of the Mandelstam representation.

*This work was done under the auspices of the U. S.

Atomic Energy Commission.
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