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PION CLOUD EFFECTS AND THE TWO-CENTER MODEL OF COSMIC-RAY JETS
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Recent investigations of high-energy nuclear
interactions' have shown that at energies above
1 Gev an important part is played by peripheral
collisions involving only one or two pions in the
meson cloud of the colliding nucleons. In the
present note, an attempt is made to interpret the
two-cone structure of cosmic-ray jets along these
lines.

Indeed, it has been shown~~' that most jets can
be interpreted as two bunches of particles emerg-
ing from two centers moving in opposite directions
each with a Lorentz factor y in the center-of-mass
system of the colliding nucleons. Until now, y
has been treated as a free parameter, supposed
to be related in some way or other to the impact
parameter and providing essentially an estimate
of the inelasticity of the collision. Perhaps the
most remarkable fact of the results obtained until
now by means of the two-center model is the clus-
ter of values of y about a mean value -1.5-1.6.

On the other hand, the pion-cloud effects de-
tected at lower energy ought to appear everi more
pregnantly at the high energies of the cosmic-ray
jets, owing to the very short deBroglie wave-
lengths of the colliding particles. This means
that at reasonable impact parameters, each of
the two nucleons has a large chance to collide
with one single pion in the meson cloud of its
collision partner. The process is then essentially
a pair of head-on pion-nucleon collisions. ~'

Owing to the fact that the incoming nucleon and

where p, is the pion rest mass (M=c =1). For
yo» 1 these expressions reduce to

y =(yo/2u) ',

y, = (vy. /2) ~'. (4)

Therefore, obviously,

y y. =y./2=y ',
C

where yc is the Lorentz factor of the c.m. system
of the colliding nucleons with respect to the labo-
ratory frame,

y~/ym = (ye+ p)/(pro+ 1)= p. , (for large yo) (6)

its pion cloud move with the same velocity in the
lab system (Lorentz factor yo), the kinematics of
the two quasi-independent pion-nucleon collisions
automatically lead to a fixed value of y at high yo
values (say, above 10"ev).

Let y, be the Lorentz factor for the collision of
the incoming nucleon with the pion at rest in the
lab system, and y, the corresponding quantity for
the collision of the incoming pion with the target
nucleon. We have then (see reference 10)

ri= (r&+ u)(1+ u'+2IJy, ) "',

r.=(~ro+ 1)(1+~'+2py, ) ~',

Table I. Comparison of computed and observed quantities for the two-center model. All experimental y values
are Castagnoli estimatesa; for y&- 7, they have to be corrected by a factor ~ cf -0.7. At lower y& values this
correction factor approaches unity. Since y varies as pc~, the corresponding correction factor has been taken
as ™~f~2. In the range 5&re-IO the interpolation formula deduced in reference I has been used. The expected
values are weighted averages.

Energy
range

'Y

Computed

'Y

Observed
'Y

Corrected
r&/r2

Computed
rt&y2

Observed
rt/r2

Corrected

1&y -5C 3.7

c &10

All jets

44. 3

19.3

5&y -10 7. 0C

1.37

1.43

1.49

1.49

1.35 + 0.05

1.56+ 0. 06

1.89 + 0. 13

1.63 ~ 0.06

1.39+ 0.05

1.59 + 0.11

1.47+ 0.05

5.20

6.45

6.67

6.67

5.15+ 0.58

8.00+ 1.18

13.70 ~ 2.42

9.45 + 0.06

6.40 + 0.95

9.56+ 1.69

6.61+ 0. 75
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in the same approximation as above.
Hence, at large energies we would expect

y, /ya = 6.67, (8)

y = 1.49.

At low energies (say, yc & 7 or y, & 100), both

y, /y, and y rapidly decrease and approach unity.
According to the above ideas, an analysis has

been made of 78 jets (P, n, and a events)" meas-
ured in the Prague Laboratory. The results are
shown in Table I. The agreement between the
expected and the observed values and their trends
is obvious.

Further applications of this method may be
thought of for the case of nucleon-nucleus and
nucleus- nucleus collisions, where peripheral
interactions are expected to be sometimes super-
imposed on head-on nucleon-nucleon collisions.

The author is very indebted to Dr. J. Pernegr,
who kindly put at his disposal detailed data of the
jets recorded and measured in the Prague part of
Po- Stack No. 1.
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I wish to report a proof that the Mandelstam
representation' for a scattering amplitude is
valid for every term in the perturbation series
for the amplitude. The proof applies to any sys-
tem of interacting particles that does not have
anomalous thresholds. The latter requirement
can be expressed by the mass conditions obtained
in fourth order. In this Letter I will outline the
main steps of the proof, using the equal-mass
case as an illustration. The details are con-
tained in two papers'~' in the course of publica-
tion and a third' shortly to be submitted.

The invariant energies squared will be denoted

s, t, and u; a term in the expansion of the ampli-
tude A(s, t) will be written E(s, t). The main
steps include the following:

(1) The physical branch of E in a physical scat-
tering region has the representation

1

= limit c dn ~ ~ .dn
1 n

0

where we have (I, Sec. 6),'

D (a, s, t) = sf (a) + tg(a) —m'K(a) +ieC(a)ga.

=D(a, s, t) +ieC(a)ga ..
Z

Singularities (i.e. , branch points) of E will occur
when D& has end-point zeros or coincident zeros
(pinching the integration contour) in each a vari
able as e approaches 0. End-point zeros can be
reinterpreted by using reduced diagrams.

(2) D(a, s, t) is negative for real positive a in
the region s&0, t&0, u&0. Hence I' is real in
this region [I, Secs. 4 and 8 (E)].

(8) The only straight lines of singularities of
the physical branch of F are normal thresholds,
since they must intersect a physical scattering
region (I, Sec. 5).

(4) Curves of singularities I'(s, t) of E in the
real s, t plane have slope (I, Sec. 7)

dt/ds = f(a)/g(a), -

and they have normal thresholds as asymptotes.
(5) From (2), (3), and (4) it can be shown (III)4
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