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(2)V(r) = Q p (r')v(r - r')g (r')der'.
k

Here v(r) is a two-body potential assumed to
have a range. With Overhauser we search for
density fluctuations of wave number q; i.e., V(r)
has only a single Fourier component. In pertur-

It is the purpose of this note to interpret an in-
stability in compressional modes found by Glass-
gold, Heckrotte, and Watson (GHW). ' We show
that their instability is related to the Hartree-
Fock (HF) treatment of many-body systems by
Overhauser, ' who claims that HF theory always
predicts a ground state in a Fermi gas with a
stationary density fluctuation of a given wave-
length present. Kohn and Nettel (KN)' give a de-
monstration that for three dimensions this can-
not in general be the case for weak interactions.
The present work is in support of K¹ However,
in addition to their negative result, we find that
in a linearized theory, a sufficiently strong at-
tractive interaction gives rise to stable HF solu-
tions with a built-in density ripple, as well as a
GHW blow-up. For either repulsive or weak at-
tractive interactions there is neither instability
in GHW nor a self-consistent density ripple.
This is in complete analogy to the elegant anal-
ysis of Wolff' on the spin density case. In nei-
ther of these cases is one involved in a BCS type
transition which takes place for infinitesimal
attractive interactions. ' Further the present
method seems inapplicable to study the well-
known lattice type transition of the low-density
electron gas. A possible application, discussed
at the end of this note, is the theory of freezing
of He'.

Our starting point is Overhauser's SCF anal-
ysis. ' Since in this work we discuss density
fluctuations we shall, as do KN, confine our-
selves to the Hartree field alone. This is per-
missible if spin is unimportant and brings out
the qualitative aspects of the situation. The
Schrodinger equation for a state k with energy
Ek and wave function pk (normalized in a box Q)
in Hartree theory is

[-(nm/2m) V'+ V(r)] y =Z-y-,

bation theory, we have

ik r
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ds~ (5)

Substituting the solution (3) with the definitions
(4) and (5) into Eq. (2) and carrying linear terms
in g+(k) only (which is consistent with our gen-
eral linear development), we have

g'= [ (q)/Ql $[g / -(k')+Z'/ -(k')]. (6)

Multiplying Eq. (6) by 1/&cd(k), combining with
the equation for g (k), and summing on k gives
the necessary condition that a nontrivial solu-
tion exists:

1= [v(q)/Q] P [1/~ (k)+ 1/~ (k)]. (7)
q -q

The sum onk is for Ikl&k&, Ik+ql&kF, kF
= Fermi momentum; v(q) = fv(r) qe'zd'rr With.
this remark Eq. (7) is transformed to

1 = [v(q)/Q]~([n(k+ q) - n(k)]/~ (k)), (8)
k q

which is the same as KN Eq. (12).
Before we discuss Eq. (8), we first summarize

the theory of collective oscillations in random
phase approximation (RPA). A convenient ap-
proach is the dielectric constant method. ' In
response to a driving force of time dependence
ez~f e e I f I ~ the "dielectric constant, "defined as
the ratio of induced density fluctuation to driving
force, in RPA is

The root of e (w) gives the frequency (q) for
q

e-(zu) =1+4mzz (&u) =1-[v(q)/Q]Q . . (9)
n(k+q) - n(k)

q q (d~ k (d+zE-'
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which waves propagate freely in the system. In
RPA, these, generally, will not be damped.

For q«k&, the function 4m@&(~) takes on the
simple well-known form

4nn (~) =-v(q) g(eZ) I+(h/2)» 1
-

2
5[1-~(5)],+

(10)

where v& =kF/m. The term [(wi/2) Ej arises for
g & 1 in the limit e-0, hence the step function
[1-8(g) j; g(eF) = [density of states at the Fermi
surface]/0; $ = (&u/vpq). In Fig. 1, the function
~e[4«~(5)/v(q)g(ey)] is plotted for real g. In
the figure three situations are indicated. For
repulsive forces, there is always a solution with
Re)&1; Im(=0. These are plasmons for the
case of Coulomb forces and "zero sound" for the
case of forces with range. For attractive inter-
actions with g(e~)!v(q)! & 1, no root exists and no
free oscillation occurs. For attractive forces
with g(eF)!v(q)! & 1, if a solution exists it would
have Re) & 1 in which case we have to include the
imaginary term in Eq. (10). In this case the so-
lution in both the above examp). es is easily seen
to be Re) =0; Imp= [1+1/gv]. In particular the
sign of Imp changes as gv passes through -1
with the stable side being for weak interactions
(g!v!&1). It is thus found that a critical attrac-
tive force exists (!v(q)! = [g(eF)] ') in order for
instability to occur. This is identical to the case
of exchange interactions where a critical ferro-
magnetic exchange force was necessary for a
ferromagnetic instability. 4

Comparison with Eq. (8) then shows that it can-
not be a consistent equation unless g(eF)v(q) = -1.
For v(q) repulsive or g(eF)!v(q)!& 1, the only so-
lution of Ecl. (6) is g+(k) = 0. For g(e&)v(q) & -1,
a Hartree solution with a density ripple occurs.

It is manifested by a blow-up in zero sound about
the spherical Fermi sea and according to Over-
hausere has a lower energy than the latter.

A possible application of the above is to note
that when He' is put under pressure, there is a
certain critical pressure (™30atm) for which it
freezes. Now He' is rather an open liquid with
[interparticle distance]» [position in minimum
of v(r)]. A careful calculation (using "t"matri-
ces for v matrices) should then show how v(q)
grows with pressure. Presumably this will oc-
cur fastest for q= [interparticle distance] '. At
the point of instability, the gas-like quasi-par-
ticle picture will break down and freezing will
set in.

One last comment on the mathematics of the
instability is in order. There are cases when
collective modes have complex frequencies with
imaginary parts which damp the oscillation even
in RPA. A case in point is phonons in metals.
Here for small q the phonon is given by the roots
of

e~((d) = 1 - (d /(d —47ID~((d),
q M q

where &uM'= 4mne'/M; M = ion mass; n = ion den-
sity; n-(w) = electron polarizability. One finds

qa root at Re~=cq, where c=(m/3M) 'vF«v~.
Hence this root has $«l. Nevertheless it is
damped rather than divergent. This is because
the sign of the imaginary part is determined by
the derivative of e&(v) at the root9 which in the
present case is determined by the cuM'/ru' term
in (11). In the previous case it was determined
by n ((u).

Finally, it should be pointed out that Thouless'
and Pomeranchuk' have given general criteria
for the stability of HF solutions which are no
doubt related to the topics discussed here.
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FIG. 1. Plot of polarizability in dimensionless units
vs frequency in dimensionless units.
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The absorption spectra of group V and group III
impurities in germanium have been reported
previously. '~' For these impurities of small ion-
ization energy, theoretical treatment based on
the effective-mass formalism should be a good
approximation, and the experimental results,
especially in the case of donors, bear this out.
Experimental investigation has been now extended
to two acceptor impurities, Cu and Zn, of higher
ionization energies. The ionization absorption
of Cu and Zn in germanium has been seen be-
fore'~4 but no observation of the excitation lines
has been reported. Each of these impurities can
bind more than one hole. Studies have been made
on the neutral and the singly charged states. It
may be expected that the effective-mass formalism
would not apply for the ground state but may still
be valid for the excited states. The absorption
spectra provide the means to check this assump-
tion and to reveal effects due to differences in
the ground states.

Measurements were made at liquid helium
temperature. For the observation of the Cu
and Zn absorptions, samples suitably compen-
sated by Sb impurity were used. The solid curve
in Fig. 1 shows the absorption spectrum of Cu.
The observed lines are labeled according to the
designation used for the spectra of group III
impurities. ' As seen in Table I, the energy
spacings between the D line and the various other
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FIG. 1. Absorption spectrum and transverse Zee-
man effect of Cu impurity in germanium. Copper con-
centration is 1.2X10 ~ cm 3. Magnetic field is parallel
to [111]in the (110) plane.

lines are very close to the corresponding spacings
in the group III spectra. This applies also to the
spectrum observed for Zn, the data for which
are included in Table I. In the case of Zn, addi-

Table I. Ionization values and energy spacings between the excitation lines for various impurities in german-
ium, in units of 10 ev.

Group III
(average values) CU Zn Zn

B-D
C-D
D-G

Ionization
energies

1.388
0.722
1.73~

~Optical
Thermal

1.398 + 0.020
0.745+ 0. 016
1.72+ 0.03

42. 8
40

1.382 + 0.051
0. 729 + 0.033
1.84+ 0.03

32.6
30

3.33 + 0.06
4 ~ ~

85.8
90
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