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As is well known, muons and electrons appear
to have identical couplings. Their masses are,
however, different. Such a situation seems rather
peculiar and has recently received much atten-
tion. ' In this note we shall (1) define a formal
operation of muon-electron symmetry; (2) show
how the total Lagrangian, excluding weak coup-
lings, can be written in a form exhibiting such a
symmetry, if electromagnetic coupling is mini-
mal; (3) show that it is impossible to satisfy such
a symmetry when universal weak interactions
are included, if only one neutrino exists; (4)
show that it is possible to have such a symmetry
in a two-neutrino theory; (5) point out the close
connection of muon-electron symmetry to a prin-
ciple forbidding the transformation of muons into
electrons.

The present investigation is related to some
recent papers' ~ dealing with the elimination of
particular muon- electron couplings. Of the above
points, (2) is already contained in reference 3.
We shall also make use of the general theorem
of reference 4.

We first define a formal operation of muon-

electron symmetry. We introduce a two-dimen-
sional e-p, space, which we call L space (lepton
space). The e —p symmetry, or L symmetry, is
performed by an unitary operator ~, such that

where g is a vector in L space describing the
electron and muon fields and v, is a Pauli matrix
in the usual notation. In the representation in
which the components of g are e and p, the ope-
ration (1) just amounts to the substitution e= p, .

A general renormalizable Lagrangian, exclud-
ing weak interactions, can be written as'~ ~

2=-7p[y 8(A+y 8)+(C+iy D)]g+z +g, (2)5 5 y s'

where g is the free-photon Lagrangian, Zz is
the strong Lagrangian that we assume does not
contain e or p, , and A, B, C, D are Hermitian
matrices in L space. The requirement of in-
variance under I symmetry implies that A, B, C,
D all commute with 0,.

A theorem, whose proof can be found in refer-
ence 4, states the existence of a nonsingular
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R = Q + V 0'i + W (02 - iG~), (4)

with u, v, w complex numbers. One now sees
directly that such a form of R is inconsistent
with the assumption that A, B, C, D in Eq. (2)
commute with o,. From (2) and (3) one sees that
R and S must satisfy

R (A+B)R = 1; S (A B)S= 1; S -(C+iD)R =M, (5)

where M = —,'(me+ m &) + —,'(me - m &)o„ to obtain,
after transformation, the ordinary Lagrangian
for muon and electrons. It follows from (5) that
R has to satisfy the equations~

R (A+B)R=1; R (A-B) (C +D )R =M . (6)
-1 2 2 2

The first of Eqs. (6) implies w = 0 in (4).'0 But
then it is impossible to satisfy the second of
Eqs. (6) since the left-hand side commutes with

a, while M* does not.
A different situation occurs if one assumes the

existence of two neutrinos, both left-handed:
one, ve, coupled to the electron, and the other,
v&, coupled to the muon. " A simple transfor-
mation to obtain the desired symmetry consists
in introducing new fields e', p, ', ve', v&', ac-
cording to

1, , 1
e = (e' p'), p=(.e' 0'), , -,

1 ~, 1
v = (v'+v '), v = (v'-v ').
e ~22e P

'
P ~22e P,

The total Lagrangian assumes the symmetric

matrix T in spin space and L space, such that
by transforming according to

g= Tg'

the Lagrangian takes its usual form in which the
electron and muon components of g' are not
coupled. ' Thus there exist infinite choices of A,
B, C, D that make the Lagrangian (2) manifestly
L-symmetric. A particular choice is given in
reference 3.

We now add weak interactions to the Lagran-
gian. We assume that e and p. are coupled iden-
tically in the (1+ys) projection. 7 The matrix T
is now restricted from the condition of giving a
symmetric description also in terms of g'. Writ-
ing T=aR+aS, where a= —', (1+y,) and a= —,'(1-y,)
and R, S act in L space, such a condition re-
stricts the form of R. R must be of the form

form

g= -e'(y 8+m )e'- p, '(y 8+m )p'+m [(e'p, ')+(p, 'e')]

-v 'y Bv -v 'y Bv +G[(e'y av ')+(p, 'y av ')
e p. p. X e A. p.

+ ...][(v 'ay e')+(v 'ay p, ')+ ...]e g p,

+ (other terms not involving leptons). (7)

Here m+ = 2(me +m&), G is the weak-coupling
constant, and the contribution to the weak cur-
rent from baryon and meson terms has not been
written down explicitly. The Lagrangian (7) is
written for the usual formulation of the A ™V

theory. ' Of course, L symmetry here involves
also an exchange of ve with v&.

Finally we come to the last of the four points
mentioned in the introduction. According to
general principles we expect that a selection rule
be connected to the possibility of L symmetry.
One sees that S in (1) can be taken to satisfy
sgt =1, and S'= 1, and therefore it is Hermitian,
with eigenvalues +1. If L symmetry is satisfied,
states with eigenvalue + 1 cannot transform into
states with eigenvalue - 1. What is the physical
meaning of this conservation law? From (1) and
(3) one notices that 8 can also be represented by
a matrix T 'o, T acting on g'. Such a matrix has
the following properties: (a) it is traceless, (b)
its square is unity, and (c) it must commute with

I, because of the invariance of Z. Therefore it
can only be + o,. It is now evident that the con-
servation law is one that forbids a muon to trans-
form into an electron and vice versa (unless
other particles such as ve and v&, bearing quan-
tum number s, are also emitted or absorbed).
We may call this law the "law of muonic number
conservation". Such a law is not satisfied in the
one-neutrino theory and this simple observation
may actually be taken as an independent proof of
our statement (3) that we derived above by direct
algebraic verification. This remark also illus-
trates the role of minimal electromagnetic coup-
ling in our statement (2), since, by nonminimal
coupling, p. -e transitions could well occur.
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according to minimal electromagnetic interaction,
through the replacement B/Bx& B = (B/Bx i-eA ). The

P. .
matrix A+ y SJ3 is positive definite to assure a positive
definite energy.
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