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The aim of this Letter is to present a solution
of the ferromagnetic problem in the Heisenberg
model in random phase approximation (RPA).
This is conjectured to be the high-density limit
theory. In this preliminary account we restrict
ourselves to spin one-half and to a study of mag-
netic properties alone.

The principal result of the analysis is a mag-
netization curve which imitates conventional
spin wave theory very closely but with the ex-
istence of renormalized spin wave frequencies
according to ~(q; T) = &u(q; 0)M(T)/M(0), where
M(T) is the magnetization at temperature T, in
accordance with an idea of Brout. ' The theory
goes over to the spherical model' at temperature
higher than the Curie temperature for small
static fields with the Curie point given by the
spherical model value. Thus we have a consis-
tent extrapolation formula through the whole
temperature range possessing rigorously correct
limiting properties for T -0 and T —~, as well
as a presumably accurate value of the Curie
temperature in the limit of high density.

We write the Heisenberg Hamiltonian in the
form

(1) a term,

+, — i(u) ie)-t zX'=-S (-q')h, e -gp+.S. H.
q/

Denoting by &0)T H the thermal average at
temperature T and external magnetic fi.eld H of
the operator 0, we may define the adiabatic
spin susceptibility,

&s (q'))T HX-, ( ) = li
~

T, Hi~ (4)
0l - i((d te)t ~-

q
- 'h-. "q'

Writing the Heisenberg equations of motion, one
easily finds with help of (2),

X-
R

T, H [v(0) -v(q)]2R+ gp, H -&~ i+a
' (5)

where R is the reduced magnetization, R =2N '
x&pisi )T H. From the Kubo formalism, ' the
appropriate form of the fluctuation-dissipation
theorem is easily derived:

~ OO

1-exp(I~/kT) ™q( 'T, H"

&=-2Z-~(q)&s (q)s (-q) =( P)&s (q)s (-q)& (6)

+ $[s'(q)s (-q) +S (q)s'(-q)]), (1)

where we have Fourier-analyzed the exchange
potential v(r) and the spin operators S(q)
=N ~Pi Si exp(iq ri). The random phase ap-
proximation can be summarized by the simpli-
fied commutation rule which expresses the de-
coupling of different Fourier components:

[s (q), s (q )] =6,(2/Kx)s (0),

where y in Eq. (6) is the adiabatic susceptibility,
which in RPA is given by Eq. (5). Substituting
Eq. (5) into Eq. (6), we have

R
exp([(o(0) - v(q))2R+ gy H]/kT] —1

=&s (q)s'(--q», „.
In a completely similar way, we obtain

[s (q), s (q )] =~6 (1//x)s (q ),

R
1 - exp(-[(v(0) - v(q))2R +gpH]/kT)

=&s (q)s (-q)&
7

(8)

where N is the number of spins.
We apply to the system a finite longitudinal

magnetic field H and switch on adiabatically an
infinitesimal transverse rotating magnetic field
of wave vector q'. This adds to the Hamiltonian

Using the sum rule,

&-[S (q)s (-q)+S (q)s (-q)]=»
q

we obtain the following equation for the magneti-
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zation:

,„~
[v(O) -»(q)]2R+ AH)r

q

(10)

Equation (10) has two classes of solutions in
the limit H-O.

(a) H-O, R + 0, or the ferromagnetic region.
The physical interpretation of (10) in the ferro-

magnetic region is best seen by writing (10)
(as H —0) in "spin wave" form:

n=P R
exp{[v(0) - v(q)]2R/kT] - 1 '

q

1/kT =E(1)/v(0), (12)

where n is the number of "spin deviations";
n = &N(l -R). Thus the magnetization curve (11)
appears as a consequence of the existence of
collective spin motions generalizing at finite tem-
perature the well-known spin waves by renormal-
izing their frequency by a factor R. This con-
cept of renormalized spin waves, which leads to
a T' correction to the usual spin-wave theory for
the magnetization curve at low temperature,
seems to be in contradiction with Dyson's theory, '
and this discrepancy will be studied in detail in
the future. This concept and the T' law which
results has been already introduced by Brout
and Haken' from a physical point of view. The
magnetization curve obtained in reference 1,
however, is not the same as the present one. A
detailed study has been made of this discrepancy
by Brout. It has turned out that the reasoning in
reference 1 contained an inconsistency in the
evaluation of traces in RPA. In a subsequent
publication it will be shown how the final result
[Eq. (10)] can be obtained by a consistent RPA in
the partition function.

The Curie point determined from (10) or (11)
is obtained by taking the limit R -0, 0 -0:

with
1 1

N —1 - [v(q)/v(9)] '
q

which is the Curie point of the spherical model.
(b) H -0, R -0, or the paramagnetic region.
The susceptibility being defined by g = ag pR/E

as H-O, one finds immediately from (10)

If we write

1 1
N —0[v(0) v(q-)]+0(ru/2)'/X (13)

q

/gp, )' 1

2j 1-P[v(0) -5] '

one sees from (13) that 5 is determined by

N 1-P[v(q) - &]
'

q

(15)
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which shows the equivalence of our paramagnetic
curve with that obtained from the spherical model. '
Because of the work of Brout, we speculate on the
present theory as the high-density limit theory.

A complete discussion of these results, as well
as the thermodynamic and nonequilibrium prop-
erties, will be published in a forthcoming paper.

We should like to thank R. Brout for his help
in this study as well as for many very interesting
discussions.
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