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one hand, that y[= 2 ln(X, /X, )] and Z'(=X,X,) are
also orthogonal coordinates, the latter being de-
fined again on a logarithmic scale. Furthermore,
since one has 1-u' =x,'/Z', definite values of M

and, as well, of a given area in the (u,y) plane
are obtained, for different values of x„bysim-
ply performing a translation along the Z' axis
(first diagonal). On the other hand, since d ln(X)
=dX/X, a given area on this plot gives directly
the integral of (dX,/X, )(dX,/X, ) over the corres-
ponding X„X,ranges. Thus, as long as the con-
stant area, defined in the (u, y) plane by the angu-
lar acceptance, remains within the limits given
by the phase space, fj[(1-u')/M](tfX, /X, )(dX,/X, )
stays constant and G(x, ') will vary only slightly
as a result of the smooth variations of the factor
N(X', )N(X, ) in the translations; when the phase-
space limits become effective [i.e. , for x,
& tan(8, /2)], G (x, ') will decrease more sharply.

In conclusion, we notice that the simple and
transparent DEPA can be successfully used (see
Fig. 3), at least for nontagging measurements.
In particular, it allows one to easily understand
and compute the p, dependence through a scaling
function of x, =2P, /Ks and of the angular cutoff
in the acceptance of the central detector.
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It is found that any complete single-photon tree amplitude has a general canonical form
which vanishes in certain kinematical zones provided that any derivative couplings are as
prescribed by gauge theory. The location of these zones depends only on the external
charges and momenta. Their occurrence is based on classical radiation interference
that is a generalization of the well-known absence of dipole radiation by colliding particles
with the same charge-to-mass ratio. Weak-boson amplitude zeros are explained.
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We have found amplitude zeros in a very gener-
al class of single-photon tree graphs. The physi-
cal basis for these zeros is the complete destruc-

tive interference of the classical radiation of the
incoming and outgoing charged lines and is the
generalization of the well-known nonrelativistie
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result where electric dipole radiation vanishes
in collisions of particles with the same charge-to-
mass ratio and where magnetic dipole radiation
vanishes for such collisions if in addition their
g factors are identical. What is remarkable is
that the same cancellation ean go through, at
arbitrary photon momenta, for quantum tree am-
plitudes which include spin and contact (seagull)
currents and internal line radiation.

This result can be stated as a theorem. Let T~
denote a tree graph with n external lines labeled
by particle four-momenta P&, charges Q, , and
masses m;. The external and internal lines ean
be scalar, Dirac, or vector particles (spin ~ 1).
The vertices of T~ are taken to correspond to
local interactions involving any number of fields
with constant or single derivative eouplings, and
the derivative eouplings must be of gauge-theory
form. ' In particular, the photon-particle coup-
lings, which are central to the theorem, must
correspond to the same gyromagnetic ratio, g=2,
for all spinning particles.

Theorem: If Mz is the single-photon emission
amplitude which is the sum generated by making

g [p ~ & +spin current+ contact current]. . .,
~ Q'

photon attachments (four-momentum q) in all pos-
sible ways' onto T~, then

if the ratios Q;/p, ~ q are all equal.
Comment. Th—e conditions for (1) to be valid

are independent of the orientation of any spin and
ean be written as the n —2 equalities

Q; Q, z-2, . . . n |, (2)

where we have chosen i =1 as a standard and i =e
as that ratio determined in terms of the rest by
charge and momentum conservation. Equations
(2) and momentum conservation define a kinema-
tic region of amplitude zeros which we call the
null radiation zone of M &.

Proof: The theorem is proven first in the spe-
cial case where && is an arbitrary vertex, V&,
and then generalized to include internal lines.
The external-line current factors Q ~ e/p ~ q
which are identified with photon emission with
charge Q flowing along momentum p in a Feynman
graph are' outgoing,

and incoming,

. ~ .l- p. ~ —spin current —contact current] y ~ q

for particle wave function y and photon polariza-
tion &. The contact current arises from both
the momentum change (due to photon emission) in
and the gauging (seagull) of any derivative coup-
ling for the external leg. For the eases of inter-
est, X=I.1; ~(p); n.(p) =~ sn (p)], x=(1;~(p);
q„"(p)=g Bq (p) ], and the spin current is j0;
~i a "~q, ~ 8]'for a (scalar; Dirae; vector)
particle, respectively, where

(4)

and g„is the vector polarization. If there is a
derivative coupling ~ =g ~ ~, the contact cur-
rent is &

The one-photon amplitude M ~(U~) generated
from V~ is calculated using (3) and the relevant
vertex coupling. Clearly the convection currents
cancel separately when Eqs. (2) are satisfied by
momentum conservation and transversality (q ~ &

=0). Except for the Yang-Mills vertex, the can-
cellation of the spin and contact terms is a con-
sequence of an interesting relationship between

(3b)

Lorentz transformations and the photon-particle
eouplings. Namely, we find that the spin currents
are proportional to the relevant first-order wave-
function eorreetions corresponding to the Lorentz
transf ol matlon ~

p lj =gp lj+ + p p ~ where + ls 1n-

finitesimal, while the contact terms are propor-
tional to the first-order change in a derivative
coupling (in momentum space) also due to the
same &„,. Thus when Eqs. (2) are satisfied
M z(V~) is proportional to &M(Vc), the first-order
change in the vertex amplitude M(V&;) correspond-
ing to V~. Since M(V~) is Lorentz invariant
5M (U~) =0 and the theorem follows. The theorem
also follows for radiation by a vector particle
coming from a Yang-Mills vertex because of a
crucial cancellation in the terms quadratic in q'

which appear in this instance.
The generalization of the proof to include inter-

nal lines follows from the fact that if Eqs. (2) are
satisfied then Q, /pr ~ q =Q, /p, ~ q, where QI and

PI refer to any internal line of &z that is not in a
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closed loop, and from a novel decomposition of the internal-line emission into two quasi-external-line
forms. That is, any internal-line emission factor involving propagators D can be placed in the general
form

[D(p —q)(p ~ & + spin+ contact) —(p. & +spin+contact)D (p)],
~ g

where as with (3) all indices have been suppressed. A simple (scalar) example of (5) is

(5)

2 Q2p —q) ~ ~ 2 2= 2 2 '~-p'~ 2 2 ~

(p —q)'-m' p'-m' p ~ q (p —q)'-m' p'-m' ' (6)

The identity (5) is crucial since it implies, under
the conditions of the theorem and on the basis of

the same invariance arguments used for t/'~, that
the currents which are represented by the square
brackets of (3) and (6) cancel as we sum the con-
tributions of the photon attachments throughout
To, Namely, as a conse»luence of (5), M z(To) is
basically a sum of gauge-invariant quasivertex
amplitudes for which the theorem holds individu-

ally. This completes the proof of the theorem.
Radiation representation. The t—heorem and

the linearity of M z(T~) in the charges imply that

! there is an (n —2)-dimensional first-order zero
in the space of the variables Q;/p; ~ q. Irrespec-
tive of whether this null radiation zone lies in the
physical region, the theorem implies that M z(T ~)
has the representation

My(Tg) = E (
' — ' )P,

Furthermore, it is straightforward to show that
Mz(To) can be expressed in a new canonical dou-
ble-difference form. For the special ease
M~(Vo) it is

(6)

where j; is the product of the current for photon emission by the ith leg and the remainder of the am-
plitude. The general form for M&(To) is obtained by use of the»luasivertex expansion discussed in
the previous paragraph.

Example. —I,et us illustrate the theorem by a simple n =4 scalar particle example where T& is a t
channel exchange graph with constant vertices. By the identity (6), the five graphs of M

~
can be rear-

ranged to read

1 Q,' (p. -p.)'-m, ' p, q

Q, —Q4+
(p p )

(p, -p,)

Q, Q, Q, —Q, (9)

within an overall constant factor and with p, +p, =p, + p, +q. The internal particle has mass m, and
charge Q, =Q, -Q, =Q, —Q, .

It is seen that (9) vanishes under the conditions (2). The two terms in (9) correspond to the two»luasi-
vertices and vanish separately as advertised. For Q, =0, the two terms combine to cancel.

Classical correspondence. —The relativistic amplitude for radiation during collisions is found from
the classical current

k n

j(x, t) =[8(-t) Q +g(t) g ]Q» v; &(x —v»t —r»(0))+ [small-distance, small-time corrections], (10)
i = k+].

where k initial particles scatter into n -k final particles with uniform velocities v; = r
& up to or after a

time 7 of collision, say, —7/2- t - ~/2. Spin currents are ignored. Then the classical amplitude for
radiation in the direction n by this current for low frequency, ~~«1, is'

n

A =—[g —Q] ' - v, ~ & e px[-i&un ~ r, (0)].
1 —n ' v»
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It is seen from (11) that the sudden disappear-
ance/appearance of charges provides the eorreet
infrared limit& -A~R as -0, where

(12)

AiR =I Q -g]
0+1 1

(14)

With this expression, it is obvious that A. &R =0 for
common Q& /p~ ~ |I, precisely the conditions of the
theorem.

Finally, the theorem leads to a number of re-
sults and remarks'.

(1) The null radiation zone always lies in the
physical domain for a given process if all the in-
coming and outgoing charges are of the same sign
and if n —1 masses are neglected. If we then con-
sider increasing these masses to some arbitrary
values, the zone may move out of the physical
region depending on the ratios Q&/m;.

(2) The n =3 case is precisely the zero discussed
previously for weak-boson reactions, ' ' and we
have thereby identified the physical origin of such

gauge zeros. For the same case, the factoriza-
tion of Ref. S is reproduced in (8).

(3) Through the generality of the theorem we
discover previously unnoticed zeros in ancient
radiative processes such as

e +e e +e +y)

where the zero occurs for the photon at right an-
gles to the beams in the c.m. system and for the
final electrons at equal energies. It is a two-di-
mensional zone consisting of the common electron
energy and a final electron azimuth relative to
the photon axis. Other reactions such as hard
quark scattering, q + q - q +q + y, or ~ radiative
decays serve as examples in which the existence
of radiative zeros depends crucially on the parti-
cle magnetic moments, as in the ~' reactions. "

(4) A physical null radiation zone can exist for
a subset of neutral external particles provided
that they are massless, they can propagate along
the photon's direction, and their spin terms
vanish in that configuration. Vector particle coup-

Nonrelativistically, A &R reduces to the electric
dipole amplitude and indeed for common charge-
mass ratios,

n

A rR o( =0 & ' ( Z —Z lm ) v) =0.
k+1

We discover a relativistic generalization of (13)
by rewriting (12) in four-vector notation,

lings must involve conserved currents and avoid
elastic forward scattering; thus v +e —S' +y
has a gauge zero (Ref. 7) while Compton scatter-
ing, y+e -y+e, does not.

(5) Other massless gauge bosons are known'"
to give rise to n =3 amplitude zeros. The present
theorem can be generalized to the determination
of the canonical form and possible null radiation
zones for arbitrary gauge groups. The charges"
now involve the representations of the particles
and the amplitude must be invariant under the
transf ormations of the corresponding internal
symmetry group. Unfortunately, along with color
the amplitude zeros are neutralized by the neces-
sary averaging/summing that goes on when the
quark and gluon reactions are hadronized.

(6) At the heart of the theorem is the close,
elegant connection between the electromagnetic
gauge couplings and a Lorentz transformation of
the particles' spin. The same connection is re-
sponsible for g =2, i.e. , the identity of the orbital
and spin precession frequencies of a charged
particle in a uniform field if its couplings are
given by gauge-theory tree graphs. " In each
case, the null radiation zones and the valueg =2
are destroyed by quantum corrections from loop
graphs. We also note that g~2 destroys the spin-
current cancellation by adding terms that are no
longer a universal I orentz transformation of the
fields.

(7) The theorem implies a low-energy theorem
for any complete photon amplitude, including
closed loops, since the leading terms' in q van-
ish under the conditions (2).

(8) It is well known that gauge theory eouplings
can be derived" by assuming a unitarity con-
straint on the high-energy behavior of tree graph
amplitudes. By turning our argument on its head,
electromagnetic gauge theory couplings can be
derived by the constraint that the canonical form
(8) is maintained in tree graph approximation.

(S) Although we have not investigated systems
with spin & 1 it is possible to build a spin-4 sys-
tem out of a composite of 2J spin-~ collinear
fermions. It is interesting to note that in the
tree graph approximation gauge couplings and
identical Q; /P& ~ q for collinear constituents trans-
late into an effective gauge coupling for the spin-
4 composite which preserves the null zone.

(10) In view of the intimate relationship between
internal symmetry and space-time which is cru-
cial to our results, an interesting open question
is the possibility of the extension of the canonical
form, (8), to graviton radiation and even to super-
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symmetry.
(11) I ocal gauge theory exposes an intimate

relationship between internal symmetry and space-
time. Null zones, including the ancient dipole re-
sult, show another face of this relationship, lead-
ing to more equations involving the internal vari-
ables (e.g. , charge) and space-time (e.g. , mass-
es and angles).
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We mean by this that the couplings involve no deriva-
tives of Dirac fields and at most single derivatives of
scalar and vector fields. Products of single derivatives
of distinct scalar fields are allowed. All vector deriva-
tive couplings must be of the Yang-Mills trilinear vari-
ety or products thereof. Such couplings include all re-
normalizable theories of current physical interest as
weIl as an infinite class of nonrenormalizable theories
corresponding to unrestricted numbers of fields.

2Attachments are made onto all charged lines and
onto vertices with derivative couplings (seagulls).

3A much more detailed discussion will be presented
elsewhere: R. W. Brown, K. L. Kowalski, and S. J.
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contact terms are linear in q. When Dirac or vector
particles encounter a derivative coupling involving
their own field, quadratic terms appear and generally
these violate the theorem. An important exception
occurs for the Y~&g-Mills vertex, where a cancellation
occurs due to the cyclic nature of the gauge coupling.

~The appearance of the current differences is easy
to understand by a complementary version of the theo-
rem. Namely, suppose that all of the j;/p; q factors
were equal, then M~(Vz) vanishes by charge conserva-
tion, if we define all particles as outgoing.

D. R. Yennie, Lectures on Strong and E/ectxomag-
netic Interactions (Brandeis, Massachusetts, 1963);
J. D. Jackson, C/assica/ E/ect~odynamics (Wiley, New

York, 1975), Chap. 14 and 15.
YR. W. Brown, D. Sahdev, and K. O. Mikaelian, Phys.

Rev. D 20, 1164 (1979).
K. O. Mikaelian, M. A. Samuel, and D. Sahdev, Phys.

Rev. Lett. 43, 746 (1979).
C. J. Goebel, F. Halzen, and J. P. Leveille, Phys.

Rev. D 23, 2682 (1981). Equation (8) can be shown to
agree with the factorization formula of this reference
for @=3,

Zhu Dorgpei, Phys. Rev. D 22, 2266 (1980).
"V. Bargmann, L. Michel, and V. L. Telegdi, Phys.

Rev. Lett. 2, 435 (1959); S. J. Brodsky and J. R. Pri-
mack, Ann. Phys. (N.Y.) 52, 315 (1969).

' C. H. Llewellyn-Smith, Phys. Lett. 46B, 233
(1973); J. M. Cornwall, D. N. Levin, and T. Tiktopou-
los, Phys. Rev. Lett. 30, 1268 (1978), and 31, 572(E)
(1973).

Locally Snpersymmetric Grand Unification

A. H. Chamseddine, R. Arnowitt, and Pran Nath
Department of Physics, Northeastern University, Boston, Massachusetts OZ115

(Received 12 July 1982)

A locally supersymmetric grand unification program is proposed which couples the
N = 1 supergravity multiplet to an arbitrary grand unified gauge group with any number
of left-handed chiral multiplets and a gauge vector multiplet. A specific model is dis-
cussed where it is shown that not only do the gravitational interactions eliminate the
degeneracy of the vacuum state encountered in global supersymmetry, but simultaneous-
ly they can. break both supersymmetry and SU(2) (3 U(1) down to a residual SU(3)'(m U(1)
symmetry at 300 GeV.
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Recently much interest has been devoted to
supersymmetric grand unified theories. ' ' All
existing supersymmetric grand unified models
are based on global supersymmetry. In such
theories it is generally easy to break spontaneous-
ly the internal, e.g. , SU(5), symmetry, but more
difficult to break supersymmetry itself. In this

paper we propose a new type of supersymmetric
grand unified model based on local supersym-
metry. We consider here N =1 supergravity'
coupled to left-handed chiral scalar' and gauge
multiplets. ' We will see that the supergravity
couplings automatically produce a spontaneous
breaking which removes the degeneracy of the
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