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a phase proportional to the winding number of
the particle trajectories around one another.
This phase can be regarded as an interaction of
a peculiar type (long range, dependent only on
topology of paths); or we may incorporate it into
the states. In the latter procedure, the ampli-
tude for two anyons at positions r, (t,), r,(t,) to
propagate along given paths to positions r, (t,),
r2(t, ) depends on the angle through which the
relative position r, —r, has turned. The phase
is not in general unity for a 2r turn, and we
must allow states as in (5) or (6) not 2~ period-
ic in the angle -~o keep track of it. The mathe-
matical analogy of all this to winding numbers
and 0 vacuums in gauge theories' is very close.

The situation for three or more anyons seems
very complicated. The configuration space for
three identical anyons will be C = 6'tx (R' x 6t/g - I
with symmetrical points identified [e.g. , (r„r„r,)
-(r„r„r,)] and identical points [e.g. , (r»r, =r»
r,)] excluded. The wave function is defined on
the universal covering of this space, with con-
ditions like (6) for points in the covering space
which project to one point in C. The universal
covering space seems very awkward to param-
etrize and I have not made much progress with
it. It is certainly an intriguing mathematical

problem to see how the statistical mechanics of

many free anyons interpolates between bosons
and fermions.

I am very grateful to Sidney Coleman for press-
ing me to think through this subject and for sev-
eral helpful suggestions. This research was sup-
ported by the National Science Foundation through
Grant No. PHY77-27084.
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The directed-site animal problem on the square and triangular lattices is shown to be
equivalent to Baxter's hard-square lattice-gas model with anisotropic next-nearest-
neighbor interactions at a disorder point. The exact solution of the latter is used to de-
termine the animal numbers as functions of their size in the two cases. Expressions in
closed form are proposed for the number of animals on an infinite strip in terms of
width and animal size, and for the average transverse extent of animals of a given size.
PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Cn

The directed animal problem, "which is re-
lated to the problem of directed percolation, '
has been studied recently using series expan-
sions, ' in the Flory approximation, using the E

expansion, ' and with finite-size scaling tech-
niques. ' The problem in d dimensions is related
to the Lee-Yang edge-singularity problem in
d —1 dimensions. ' In this Letter the d =2 prob-

lem is shown to be equivalent to a (square-)lat-
tice-gas model with nearest-neighbor (NN) ex-
clusion and anisotropic next-nearest-neighbor
(NNN) interactions studied earlier by Baxter and
collaborators. ' This model has an anisotropic,
but reflection-symmetric, Hamiltonian. It can
be solved along a line in the three-dimensional
interaction-parameter space, and the expression
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for the density of the lattice gas along this line
establishes the validity of the expressions for the
number of directed animals on the square and
triangular lattices conjectured earlier. '

Consider an A &N square lattice with periodic
boundary conditions and associate a variable n, ,
(taking values 0 and 1) with each site (i, j). The
Hamiltonian of the system is given by

H„=Z+, ,n, , (l -n. . .)(1 n-. . .) —pg ~;;

The corresponding partition function is defined by

Z ~(o. = exp(- J), z = exp( p ), N )

ed animals (which are allowed in the sum over
states) only contribute to the coefficients of z'~
and higher powers. In the thermodynamic limit
N-~, the right-hand side of Eq. (3) converges
to 1 for i z i &X ', and hence

f(a=0, z) =0, for Jzi& A. '.
Thus, for u=0 and

ized

& Z ', in the thermody-
namic state of the Hamiltonian B„, all sites are
unoccupied. First-order perturbation theory
about this unoccupied state shows that

8 00

——f(~, z) = Q A.z'=-A(z),
~D s=1

= Tr exp(-If „). (2)
for lzl&~-'.

The free energy per site in the thermodynamic
limit will be denoted by f(n, z). In the limit 8
-+ ~, configurations containing a site (&, j) such
that n;, is 1, and both n;, , and n. . . are zero,
have infinite energy, and do not contribute to Z„.
This is the directed-animals constraint. The con-
straint also implies that there are no sites dis-
tinguishable as sources, and that all animals
must wind around the torus. The smallest ani-
mals are of size N, and there are only 2N such
distinct configurations. This implies that

Z„(~=o,z, z)
= 1 + 2Nz" +higher -order terms in z, (3)

since the coefficient of z' in Eq. (3) is the num-
ber of animals of size s on the X& N torus. This
coefficient increases at most as A. ', where A. is
a constant independent of 1V. Note that disconnect-

7l 4'a, =p, , (Ln, , n. . .„+Fv:n, ~, n,„,, —pn, , );

where

M=O; e =1+z; e~=-(I-n)z(1+z) '. (8)

HB is the Hamiltonian of the Baxter model with
NNN interactions L and M, and chemical poten-
tial p. The directed-animal problem n =0, z) 0
corresponds to the Baxter gas with negative activ-
ity (e "&0) and attractive interactions. If g(e ",e, e S) is the Gibbs free energy per site for the
Hamiltonian B&, we get

g(e ",e, 1) =in(1+z) +f(u. , z) . (9)

In spin language, B p, with M=O is the Hamilton-
ian of an antiferromagnetic Ising model with
anisotropic NN couplings in an external field de-
fined on a triangular lattice. This problem can

Z ~(a, z, Ã) = Tr g I (I —(1 —n) t, ,}z" . ~ ].
In the expansion of Z„ into a sum of products of

t;, 's, for each term the summation over n, , 's
can be done explicitly. The result can be ex-
pressed as the statistical weight of a configura-
tion of a lattice gas with NN exclusion, whose
occupation numbers n, , 's are the powers of t, ,'s
in the term, and the Hamiltonian is given by

(7)

be solved exactly' for special values of coupling
constants called disorder points. " It has been
shown by Baxter" that Eqs. (7) and (8) with n = 0
correspond to Verhagen's parametrization

b=1, z=(a —1)/(1-a+a'). (10)

Verhagen's solution is valid for 0 -a - 1, which
corresponds to -1 -z -0, or equivalently I- ) 0.
By analytic continuation, the solution can be ex-
tended to the regime -1 -z - 3. Substituting Eqs.
(8) and (10) in Eq. (33) of Ref. 9, we get the den-
sity of the lattice gas,

P 3S, 2r, -Z,

= [1 —(4e ~ —3) 'i'] /2 .

Here A, is the number of directed animals of
size s growing in an infinite plane with a single
point source at the origin. For large s, A, var-
ies as A.

' with A. = 3.' A(z) is the generating func-
tion for the directed-site animal problem on the
square lattice, and is conjectured to be given by'

A(z) =[(I+z)~'(I —3z) '~' —1]/2. (8)

efine f;,=n, ,(1-n. . .)(1-n. . .), and use
exp(-&t, , ) =(I —(I - n)t, , j in Eq. (2) to get
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g(e "=e4~-e'~, e ~ 0) = -L (13)

p(e"=e ~ —e ~ e 0)

=[] —(5 4e ~) 't2]/2. (]4)

Putting e ~=1+a in the above, we get the gener-
ating function for the triangular-lattice directed-
site animals, proving Eq. (16) of Ref. 2.

The lattice-gas equivalent of the directed-ani-
mal problem on the hexagonal lattice can be ob-
tained in an analogous fashion. Let x, and x, be
the weights of occupied sites on the two sublat-
tices of the hexagonal lattice in the directed-ani-
mal problem. The animal generating function
G, "'"(x„x,) is defined to be the sum of weights
of all animals growing from a point source at a
site with two bonds directed outwards. G, "'"(x„

d y+ d2+2

Differentiating Eq. (9) with respect to o., and sub-
stituting e =1+x, we can easily see that Eq.
(11) establishes Eq. (6) stated earlier as a con-
jecture. It may be noted here that the line e"
+e —e =M =0 does not satisfy Baxter's fac-
torizability condition, except in the zero-density
limit.

A similar treatment works for the directed site
animals on a triangular lattice with the definition

t, , =n, , (1-n. . .)(1 -n. . .)(1-n. . . ,) .
The parameters of the corresponding lattice gas
are given by

M=~; e ~=1+z; e" =-(1 —o.)z(1+z) '. (l2)

Baxter" has shown that this case also corre-
sponds to a disorder point of the Hamiltonian H p,,
and the largest eigenvector of the corresponding
transfer matrix can be obtained by a generaliza-
tion of Verhagen's Ansatz. The analogs of Eqs.
(4) and (11) a,re

x,) is related to the generating function for the
cluster size distributions G'~(x, y) of the directed
percolation problem (in the notation of Ref. 2) by
the formula

G, "(x„x,) = G"(x,x„1+x,)/x, .

The lattice-gas equivalent of the directed-animals
problem on the hexagonal lattice with staggered
activities gives a Hamiltonian formulation of the
directed percolation problem on the square lat-
tice.

The equivalence between the directed-animals
problem and the Baxter gas is valid even if the
interaction parameters are site dependent. This
implies that the correlation functions of the two
problems are related, and, as in the animal prob-
lem, the lattice-gas model must show two corre-
lation-length exponents v

~~
and v~ near the crit-

ical point. This is unlike the usual behavior of
undirected models with anisotropy where there
is a single direction-independent exponent v, and
is due to the fact that the lattice gas has com-
peting interactions and is at a disorder point. "
The Baxter Hamiltonian with e" ~0 and faetor-
izability condition shows a divergence of the cor-
relation length with an isotropic exponent v = ~6,

except at some special points. This differs signi-
ficantly from the estimated values v~~ = 0.818
+0.001 and v~= & for the directed animals. Clear-
ly, the "unphysical" region of the Baxter model
with negative activities is of much interest.

The exponent v~ for the directed animals in two
dimensions has been shown' to be —,'. Consider
directed-site animals growing from a point source
(say at the origin) on a square lattice and con-
strained to lie completely between the lines y -x
+d, and y ~x —d2 (d„d, ~ 0). Let A(s, d„d,) be
the number of such animals of size s. Results
of explicit enumeration suggest that A(s, d„d,)
is exactly given by the formula

A(s, d„d ) =(d, +d, +3) ' Q (1+2cos md)' '(1+e' )[1 —exp(imM, +im5)J,

where 5=2n/(d, +d, +3). This formula has been
verified for all 0 d] d2 8, and s -12, and is
expected to hold for all s, d„and d, . The spe-
cial case d, =0, d, =~ corresponds to animals
growing in the octant 0 ~y -x. In this case A(s,
0, ~) varies as 3's "' for large s (compare to
3's '" for unconstrained directed animals).

With use of the explicit expression for A(s, d„
d,), the fractional number of animals having a,

width $ ~ [defined here as the minimum value of

!(d, + d, + 1) such that the animal lies completely
between the lines y ~x +8, and y -x —d, ] is easily
calculated. Averaging over all animals of size s
gives

(t,)=2x3 -'A, -'-1
For large s, (E~) varies as s' ', consistent with

1
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