PHYSICAL REVIEW
LETTERS

VOLUME 49

4 OCTOBER 1982

NUMBER 14

Quantum Mechanics of Fractional-Spin Particles

Frank Wilczek
Institute for Theovetical Physics, Universily of California, Santa Bavbava, California 93106

(Received 22 June 1982)

Composites formed from charged particles and vortices in (2 +1)-dimensional models,
or flux tubes in three-dimensional models, can have any (fractional) angular momentum.
The statistics of these objects, like their spin, interpolates continuously between the
usual boson and fermion cases. How this works for two-particle quantum mechanics is

discussed here.
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In a recent note' I showed that charged parti-
cles orbiting around magnetic flux tubes have
orbital angular momentum integer +¢®/27; this
phenomenon is realized for example in the vor-
tices of a type-II superconductor and in string
solutions of gauge theories.' Closely related ob-
servations were made previously by Hasenfratz,?
;and recently by Goldin and Simon.® See also the
discussion by Peshkin,* If there is a generalized
spin-statistics connection, we must expect that
the flux-tube —-particle composites have unusual
statistics, interpolating between bosons and
fermions. Since interchange of two of these par-
ticles can give any phase, I will call them ge-
nerically anyons.

In this paper some elementary examples in the
quantum mechanics of anyons are worked out.
Description of these particles requires some
widening of the notion of a wave function. Also,
we will see that the energy levels of a system of
two noninteracting anyons are not in general sim-
ply related to the one-anyon levels.

Although practical applications of these phe-
nomena seem remote, I think they have consider-
able methodological interest and do shed light
on the fundamental spin-statistics connection.
Some related work has been done previously.?5

One anyon.—Let us recall how the fractional L,
arises., Charged particles orbiting around a flux
tube carrying flux ¢ are subject to an azimuthal
vector potential

A, =d/21r, (1)

Although the potential gives vanishing magnetic
field strength, and therefore is negligible in clas-
sical physics, it does play a role in quantum
mechanics.” It is convenient to eliminate 4 , by

a gauge transformation:

A/=A,-3,A=0, A=dg/2m, (2)

The required A is, however, not a well-defined
(27 periodic) function of the angle ¢. This re-
flects itself in the transformation of charged-par-
ticle wave functions:

w/((p)___eiadxﬂ/zwlp(q))’ (3)

In fact, since y(¢) is 27 periodic we find from (3)
that

(@ +2m) =i ®Y(¢). (4)

The allowed angular wave functions ¢’ (@) ~e'™¢
therefore have m =integer +¢®/27, which is to

be interpreted as the spectrum of orbital angular
momenta. In the primed system we have arranged

© 1982 The American Physical Society 957



VoLUME 49, NUMBER 14

PHYSICAL REVIEW LETTERS

4 OCTOBER 1982

for the charged particle to obey the free Schrég-
dinger equation (i.e., with no vector potential) at
the cost of introducing unusual boundary condi-
tions.

The boundary conditions (4) may be incorpo-
rated systematically by formulating quantum
mechanics on sections or fiber bundles,® or prag-
matically by restricting the Hilbert space of
angular wave functions as above.

Two anyons, angular momentum.—Now consid-
er two identical anyons, e.g., tightly bound flux-
tube —charged-particle composites. Suppose that
the electrostatic forces are small and can be
treated as a perturbation (that is, consider the
limit ¢ -0, ¢® fixed). Each anyon is a charged
particle, and its motion around the other is ana-
lyzed as in the previous section. If we express
the two-body wave function ¥ in terms of the
center -of -mass coordinates R, ¢ and the relative
coordinates #, ¢ then the condition analogous to
(4) is

¥(R, 6;7, ¢ +2m) =e*" 2 W(R, 6; 7, ¢), (5)

where A=¢®/27 is the anomalous angular mo-
mentum.

A more stringent condition holds if the anyons
are identical, for then rotation of ¢ through 7
amounts to an interchange of particles and must
give a definite phase. To analyze this, we must
go back to the original underlying theory. Let
us suppose for definiteness that all the fields
describing the flux tube and the charged particle
are bosonic. Then if one simply superposes the
fields, e.g., adding the gauge fields and using
product wave functions for the charged particles,
then the requirement of Bose statistics is that
the total wave function be unchanged by the inter-
change ¢ — ¢ +7. The superposition can only be
done unambiguously in the regular gauge (that is,
the original unprimed gauge above), where the
wave functions are single valued. However, this
gauge has the disadvantage that it introduces
peculiar long-range interactions between the
anyons. Infact, if one anyon moves it will inter-
act with the potential of the other through the

q\7° A term in the charged-particle Lagrangian.
We can eliminate these long-range interactions
by going to a singular gauge as before, again at
the cost of introducing unusual boundary condi-
tions. It is straightforward to see that the result-
ing condition is

W(R, 6;7, o +1) =e2" 2 W(R, 6; 7, ¢). (8)

Thus for A=0 we have effectively bosons, for A
= fermions, with continuous interpolation be-
tween these cases.

If the underlying charged-particle fields were
fermions, there would of course be an additional
minus sign in (6). Since the spin of the anyon is
s,=integer + A+s, where s is the intrinsic spin
of the charged particle, the phase accompanying
an interchange is exp(2mis,), as we would expect
on the basis of a generalized spin-statistics con-
nection,

If the angular wave function in (6) goes like
e’ then

m =(even integer) +2A,

(7

There is a centrifugal barrier when A #0, since
the relative angular momentum cannot vanish.

Two anyons, havmonic well.—In general the
condition (6) makes it very difficult to solve prob-
lems with two anyons in an external potential. In
general the Schrdodinger equation does not sepa-
rate in the 7, ¢ variables and imposition of (6)
greatly complicates its solution.

A harmonic potential, on the other hand, does
separate and can be analyzed completely. Let us
normalize so that the allowed one-anyon energy
levels are €, 2¢€, 3¢, ... which have degenera-
cies 1, 2, 3, ... for a two-dimensional harmonic
oscillator (and integral angular momentum !).

The two-anyon Hamiltonian in this harmonic well
can be separated into two oscillators—the center-
of-mass (R, 6) oscillator and the relative motion
(7, @) oscillator. For the latter, only the angular
momenta (7) are allowed. As a result the (ener-
gies, degeneracies) are, for the c.m. oscillator,

(,1), (2¢,2), (3¢,3),..., (8)

and for the relative oscillator,

[(1+24)¢, 1], [(3+2a)¢ 2], [(5+24)¢,3],...; [(8-2a)¢ 1], [(5-24)¢2], [(T-24)¢,3],... . (9)

The total energies and degeneracies may of
course be read off from these. A notable quali-
tative feature is that when A #0, 3 the two-anyon
energy levels are not simply related to the one-
anyon levels !

Comments.—It is illuminating to think about the

958

|need for extended wave functions—e.g., not neces-
sarily 27 periodic in ¢—in terms of path inte-
grals. Consider first, as above, two anyons.

The contribution of a given path (a pair of par-
ticle trajectories) to the transition amplitude has
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a phase proportional to the winding number of
the particle trajectories around one another.
This phase can be regarded as an interaction of
a peculiar type (long range, dependent only on
topology of paths); or we may incorporate it into
the states. In the latter procedure, the ampli-
tude for two anyons at positions r,(¢,), r,(f,) to
propagate along given paths to positions r,(¢,),
r,(¢,) depends on the angle through which the
relative position r, — T, has turned. The phase
is not in general unity for a 27 turn, and we
must allow states as in (5) or (6)—mnot 27 period-
ic in the angle—to keep track of it. The mathe-
matical analogy of all this to winding numbers
and 6 vacuums in gauge theories® is very close.
The situation for three or more anyons seems
very complicated. The configuration space for
three identical anyons will be C = G2 X &2 X 62/S ~ 1
with symmetrical points identified [e.g., (r}, Tp, T5)
~(T,,T,,Ts)] and identical points [e.g., (r,,T,=T,,
T,)] excluded. The wave function is defined on
the universal covering of this space, with con-
ditions like (6) for points in the covering space
which project to one point in C. The universal
covering space seems very awkward to param-
etrize and I have not made much progress with
it. It is certainly an intriguing mathematical

problem to see how the statistical mechanics of
many free anyons interpolates between bosons
and fermions.

I am very grateful to Sidney Coleman for press-
ing me to think through this subject and for sev-
eral helpful suggestions. This research was sup-
ported by the National Science Foundation through
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The directed-site animal problem on the square and triangular lattices is shown to be
equivalent to Baxter’s hard-square lattice-gas model with anisotropic next-nearest-
neighbor interactions at a disorder point. The exact solution of the latter is used to de-
termine the animal numbers as functions of their size in the two cases. Expressions in
closed form are proposed for the number of animals on an infinite strip in terms of
width and animal size, and for the average transverse extent of animals of a given size.
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The directed animal problem,"? which is re-
lated to the problem of directed percolation,?®
has been studied recently using series expan-
sions,! in the Flory approximation,* using the €
expansion,® and with finite-size scaling tech-
niques.® The problem in d dimensions is related
to the Lee-Yang edge-singularity problem in
d — 1 dimensions.” In this Letter the d =2 prob-

lem is shown to be equivalent to a (square-)lat-
tice-gas model with nearest-neighbor (NN) ex-
clusion and anisotropic next-nearest-neighbor
(NNN) interactions studied earlier by Baxter and
collaborators.®? This model has an anisotropic,
but reflection-symmetric, Hamiltonian. It can
be solved along a line in the three-dimensional
interaction-parameter space, and the expression
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