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Upper Critical Field of Regular Supercouductive Networks
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The de Gennes —Alexander theory of superconductive networks is used to study the upper
critical fields of two-dimensional square lattices built from N equally spaced infinite
wires joined by transverse strands. Phase diagrams and current-flow patterns for rep-
resentative cases are shown. A critical value is found of the magnetic flux per square
below which the current flow resembles the Meissner state, and above which an ordered
array of vortices appears, in general incommensurate with the underlying lattice. The
critical flux decreases for increasing N.

PACS numbers: 74.20.De, 74.50.+r.

Important aspects of disorder in inhomogeneous
superconduetors have been considered from a
percolative viewpoint by Alexander, using the
linearized Ginzburg-Landau (GL) equations for
nets of thin wires, "which behave as weak links'
jo1ning the nodes of the network. The experimen-
tal realization of ordered arrays of this kind may
be near, as recent experiments on two-dimension-
al arrays of Josephson junctions show. ' In this
paper we study the magnetic phase boundary and
the mechanism of nucleation in such periodic
structures of flux-locking elements.

We consider "ladder" structures, consisting
of N infinitely long wires, equally spaced and
joined by transverse strands. For finite A we
find a critical value y, of cp (flux per square)
below which the order parameter at the nodes is
uniform, with a current distribution resembling
the shielding currents of a slab in a parallel field.
When y& y„afinite wave vector q is dominant
and the current distribution has a vortex struc-
ture, ' modulated with a, wavelength 2&/q which

may be incommensurate with the underlying lat-
tice. As for Abrikosov's solution for type-II
superconductors, nonlinear terms in the GL
equations, including vortex-vortex interactions,
should stabilize a given structure, possibly com-
mensurate. The behavior of y, for A=20, 30,
and 40 indicates that y, -0 as N increases.

The de Gennes-Alexander theory of supercon-
ductivity' ' on networks is based on the solutions
of the GL equations on one-dimensional branches
ab, bc, cd, . . . , which join at the nodes a, b,

The order parameter along branch ab
of length l = I-/( is given by

exp(iy„)
sin/

&&
I y, sin(l —s) + y, exp{-iy„)sins], (1)

where s is the curvilinear coordinate along the
branch from a, y., = (2v/cp, )f A(l') dT', A is the
vector potential of the applied field, yp is the
flux quantum, and t/r, =

~ P, (e' and ry, = j P, (e'
are the values of ( at a and b. When the quantum
mechanical current associated with the order pa-
rameter (1) is supplemented with a generalized
Kirchhoff current law, ' ' one obtains linear equa-
tions for the order parameters at the nodes,
whose compatibility condition leads to the phase
dlagl am.

For a simple ladder, the nodal equations read

where n indicates the node, (&, &) refers to the
upper or lower branch, and 2y =2n'p/p, . We look
for a solution in the form ~P„"=f,"e""(o. =&, &).
Then Eqs. (2) reduce to a 2x 2 system which has
a solution if P P, =l, where P, =3 cosl —2 cos(y
+q), implying

cosl = s. j2 cosy cosq+ (4 sin y sin'q + 1)"'j. (3)

Equation (3) gives l (temperature) as function of

y (applied field) for each g. The phase diagram
is determined by asking that l should be minimum
(highest T) for a given field. Equation (3) has
solutions corresponding to metastable states, not
considered here. The condition of minimum 1 im-
plies (a) sing =0, (b) cosq =+ cosy (1+—', sin'y)"'.
For p&p, =0.215pp the solution is given by
(a) and for p& p, by (b). Superconductivity con-
denses in a uniform mode (at the nodes) for p
& p„whereas a modulated structure is energeti-
cally more favorable for p& p, . Figure 1 gives
the phase diagram. The phase boundary is the
envelope of the curves corresponding to different
q''s. Only a few q values are shown, but since for
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FIG. 1. Phase diagram of infinite ladder for q from
0 to II, in steps of v/10. The vertical axis is I =i./$
k =$0/(1-t ) 1. The physical phase boundary is the
envelope of the curves shown and is periodic in y/po.
Also shown is q, the wave vector of the condensed
state at the phase boundary.

FIG. 2. Currents in the first longitudinal branch J, '
and in the first transverse branch J&". For normali-
zation see text.

ized eigenvectors the general form of p is

an infinite ladder q is continuous between -& and
&, the phase boundary is the envelope of a con-
tinuous set of curves. Also shown is the value of
g, which dominates the superconducting struc-
ture at the transition. The whole physical re-
sponse of the system is p'eriodic in P/p, .

The order parameter and the vortex structure
can be similarly obtained. With use of normal-

. (4)

This solution gives rise (in general) to a net
transport of supercurrent along the ladder, ex-
cept for l on the phase boundary. The currents
on each branch can be evaluated from Etl. (4).
Figure 2 gives the current in the upper branch
from node 0 to 1 (&i") and the current along the
first transverse branch (8 ). In the linearized

a) gy&-. 255 Ay&= 5.65
0

b) 0/~=. 382 X./ = 2.74
0 2

c ) P/+-, 446 X./ =2.28

FIG, 3, Vortex structure in the ladder showing the evolution of current distribution as field is increased. The
net current in each branch is the sum of all current lines shown. The external flow lines represent the shielding
currents. Normalization is arbitrarily defined for each graph and a suitable discretization was applied.
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approximation the amplitude of the order param-
eter is undetermined. Figure 2 was drawn by
using an arbitrary normalization; the general fea-
tures of these curves will be preserved even if
the nonlinearities are included.

Figure 3 is a plot of the current distribution
for different field values. For p& p, there are
currents only along the longitudinal branches act-
ing as shielding currents. The critical field is
the field of first flux penetration" at which the
transverse currents appear. The current struc-
ture gives a vortex pattern of wavelength x/2
= (~ jq)t. , which for an infinite ladder can be in-
commensurate with the network. For higher
fields, the wavelength decreases and the number
of vortices per unit length increases.

Figure 3(c) shows the case where p/p, =- &.
The corresponding q, from Fig. 2, is close to
~/2. As y/p, goes through ~, the order parame-
ter vanishes at the center of every second trans-
verse branch, and the currents go through zero.
Fluxoid quantization is preserved because the
smallest circuit must include two squares. Be-
yond P/p, =~ the currents increase again, in re-
versed sense and this situation prevails until

q/q. =1.
The case of N parallel wires can be similarly

dealt with. Translational invariance leads to a
N &Ã tridiagonal determinant. Figure 4 gives the
phase diagram for Ã =4. It is seen that p, de-
creases to 0.065&,. The solutions for dif ferent
q''s lie between the lines 1 and l„.For a given
field there is a single nucleation mode of fixed q

which is shown; for p/p, between 0.33 and 0.35,
stays constant and equal to &. From 0.35 to

0.5, q drops to ~/2.
The current flow is given in Fig. 5 for p/P,

=0.1 and 0.35. For p& p, currents in the trans-
verse branches appear whose flow lines can be
interpreted in terms of vortices penetrating the
network. As p goes from p, to 0.33+„andg
varies from 0 to &, the vortex size shrinks to one
square. Associated with the plateau in q is a shal-
low minimum in l, indicating a relative stability
of the vortex structure of Fig. 5(b). For p/p,- 0.35, as q drops to ~/2, a more complex vortex
structure appears. For p/p, =0.5 all currents
go through zero and reverse sign.

The phase diagrams for M = 20, 30, and 40 are
given in Fig. 6. It is seen that l remains un-
changed whereas E&~ tends to a well-defined limit.
The numerical results show that p, tends toward
zero. For N& 2, l goes through a smooth maxi-
mum at y/p, =0.41, and through a minimum at
y/p, =0.5, related to the vanishing of the cur-
rents at this point. The eigenvectors show that
the order parameter is maximum at the surface
and vanishes in a distance -2$. Thus for the
wide strands we are always dealing with surface
effects, associated with the highest eigenvalue.
The vortex structure arises from the combina-
tion of two degenerate solutions for g and —g, as
in Ref. 5. These results are not related to those
for the infinite square lattice. ' To find a relation

—a)

77/p

/g =.1

&], -5.65

0,
0

t/@,=.350

2

FIG. 4. Phase diagram l for A =4. Also shown are
)~ and q . Note the shallow minimum in / in coinci-
dence with the plateau in q . Only half a period in p/yo
is shown.

FIG. 5. Vortex structure in the Ã=4 network for two
field values.
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structure, vortices will appear for arbitrarily
small fields, as for an infinite slab in a perpendic-
ular field. Experimental work on these systems
would help further to understand their properties.

We acknowledge fruitful conversations with
F. de la Cruz, H. Maynard, R. Rammal, J. Riess,
and B. Giovannini. One of us (J.S,) is a recipient
of a fellowship granted by the Comision Nacional
de Energia Atomica.

FIG. 6. Phase diagram for K=20, short dashed line;
6=30, long dashed line; %=40, continuous line. The
lower line is l which remains almost unchanged. The
upper line, l~, shows how the limit N- ~ is approached.

one should look for lower eigenvalues which are
insensitive to boundary conditions, as for H„.
This might prove difficult since localization in
this system is given by a power law. ' The square
lattice will not show uniform condensation for
other reasons: Since the field must penetrate the
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