
VOI.UME 49' NUMBER 1.3 PHYSICAL REVIEW LETTERS 27 SEPTEMBER 1982

'D. Hone, B. Muhlschlegel, and D. J. Scalapino, Appl.
Phys. Lett. 33, 203 (1978).

2R. W. Rendell, D. J. Scalapino, and B. Muhlschlegel,
Phys. Rev. Lett. 41, 1746 (1978).

3For a discussion and extensive references, see P. K.
Aravind, A. Nitzon, and H. Metiu, Surf. Sci., 110, 189
(1981).

'

4S. Yatsuya, S. Kasukabe, and R. Uyeda, Jpn. J. Appl.
Phys. 12, 1675 (1973).

5This instrument is similar to that described by A. V.
Crewe, M. Isaacson, and D. Johnson, Rev. Sci. Instrum.

4O, 241 (1969).
P. E. Batson, Solid State Commun. 34, 477 (1980).

~P. M. Morse and H. Feshbach, Methods of Theoreti-
cal Physics (McGraw-Hill, New York, 1953), Pt. 2,
p. 1298.

C. H. Chen and J. Silcox, Solid State Commun. 17,
213 (1975).

~See, e.g. , H. Raether, in Physics of Thin Ei/ms,
edited by G. Hass (Academic, New York, 1977), Vol. 9,
p. 149.

M. Schmeitz, J. Phys. C 14, 1203 (1981).
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In dilute alloys, in contrast to pure metals, the measured Fermi-surface volume is too
small to accommodate all the electrons. In dilute copper-based heterovalent alloys the
discrepancy increases as the solute valence increases but the anisotroPy of the Fermi-
surface changes is found to be approximately rigid-band-like in all alloys. These results
are explained quantitatively in terms of the Fermi surface being determined by only those
electrons which are scattered coherently.

PACS numbers: 71.25.Hc, 71.55.Dp

In pure metals the Fermi-surface volume is
usually considered as being defined by the total
number of electrons in the metal. More precise-
ly it is defined as the volume of the constant en-
ergy surface corresponding to the chemical po-
tential or Fermi energy in the metal. The equiva-
lence of the two definitions follows from a the-
orem of Luttinger' which was proved for inter-
acting electrons in a periodic potential. Disor-
dered alloys, however dilute, are not periodic
and so it is not immediately clear how the Lut-
tinger theorem should be extended to alloys. The
concept of the Fermi surface can be extended to
alloys by including a self-energy term describing
the interaction between conduction electrons and

the impurities. ' However, there remains the
question of how the volume of the Fermi surface
is related to the total number of electrons in the
alloy. For dilute alloys this is equivalent to con-
sidering how the rate of change of Fermi-surface
volume, b, V/c, where c is the concentration of
impurities, is related to the valence difference
~Z, defined as the number of extra conduction
electrons per solute atom.

A sensitive and accurate probe of Fermi-sur-
face dimensions is the de Haas-van Alphen (dHvA)
effect. In very dilute alloys (of order 0.01 at.Vo)

the Landau level broadening is sufficiently small
that signals can be observed and changes in the
dimensions of the Fermi surface (defined as
above) can be measured by using high-precision
techniques. "Although the measurements re-
quire a high magnetic field the effect of this on
the Fermi-surface dimensions is significant only
in the quantum limit. ' For the particularly sim-
pl. e case of a rigid-band model the change in
cross section AA. for each extremal orbit is
given by

c-'~A/Z, =-', (I,/m, „)~Z,

where A, is the free-electron cross section, and
rn, h the thermal mass. The anisotropy of the
area changes is just proportional to m, , the cy-
clotron mass of each orbit. If the small anisot-
ropy of the electron-phonon enhancement is ig-
nored, experimental values can be used for m,
and ni, h. When experimental results are com-
pared with this simple theory two distinct kinds
of breakdown of the model may occur. Firstly,
if the Luttinger theorem is invalid the total change
of volume of the Fermi surface wil. l no longer be
given by chZ. Secondly, the band structure of
the alloy may differ from that of the pure metal;
then the anisot oPy of the Fermi-surface changes
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TABLE I. Area changes for copper-based alloys. The measured chang-
es for five symmetry direction orbits, corrected by scaling for changes
in lattice constant, are expressed in terms of the rigid-band changes ex-
pected for QZ = 1.

Cu(Zn) Cu(Al) Cu(Si) Cu(Ge) Cu(P)

(111) belly
(ill) neck
(100) belly
(100) rosette
(110) dogsbone
Average (~*)

1.01 +0.03
0.84 + 0.08
1.03 + 0.02
0.99 + 0.02
0.96 + 0.02

0.97

1.79+0.03
1.73+0.04
1.77 + 0.02
1.77 + 0.06
1.79+0.03

1.77

2.29 + 0.05
2.22+ 0.05
2.24+ 0.05
2.15+0.05
2.29+ 0.1

2.24

2.6 +0.2
2.3 +0.1
2,3) + 0.3
2.3 +0.2
2.35+0.2

2.4

1.9 +0.2
1.7 + 0.2
1.95 +0.2
1.63+0.1
1.64+ 0.1

1.77

will deviate from rigid-band behavior and the
area changes, AA, will not be proportional to the
cyclotron masses.

The Hume-Rothery alloys, ' i.e. , heterovalent
solutes in nob1, e-metal hosts, are an attractive
system in which to investigate these effects be-
cause the crystal structure appears to be con-
trolled by the electron/atom ratio and this sug-
gests that the rigid-band model might be a good
approximation. Results have been obtained in
Cu(Zn), ' Cu(AI), ' Cu(Si), Cu(Ge), ' and Cu(P) al-
loys. The maximum impurity concentration in
each alloy ranged from 0.01 at.%, in Cu(P), to
0.1 at.%, in Cu(Zn). Impurity-impurity interac-
tions would appear as a quadratic concentration
dependence of the dHvA frequencies and, in the
absence of clustering, should be extremely small
for these concentrations. In each system at least
two impurity concentrations were used and there
was no evidence of a concentration dependence
that was not linear within experimental error.
The results can therefore be considered typical
of the single-impurity limit. Lattice distortion,
i.e. , a change of lattice constant on alloying,
complicates comparison with theory so that the
series of alloys was chosen with some regard to
minimizing these effects. The maximum lattice-
constant change is 0.094% per at.% Ifor the Cu(Ge)
system]' and all results have been corrected for
lattice distortion, to first order, by scaling the
measured frequencies to the lattice constant in
the alloy.

In each alloy the area changes, bA/c, for five
symmetry direction orbits vary by a factor of
about 3. It is convenient to express the results
as the effective valence difference required to
give the area changes according to Eq. (1). These
values, shown in Table I, are approximately con-
stant for each alloy indicating that the anisotxoPy
of the Fermi-surface changes is close to rigid-

band behavior. This means that for each alloy a
single average value, &Z*, provides a fair de-
scription of all the area changes and in this case,
the total change of the Fermi-surface volume is
given rather accurately by ~Z*. However, only
for the smallest values is hZ*, plotted in Fig. 1,
equal to the actual valence difference and for
Cu(P) the discrepancy is a factor of more than 2.
The experimental results show rather clearly
that for large valence differences, i.e. , for strong
impurity potentials, the Luttinger theorem breaks
down and that the Fermi-surface volume does not
account for all the conduction electrons in the al-
loy.

This deviation between the measured Fermi-
surface volume and the number of electrons in
the alloy is, it should be noted, a smooth func-
tion of the increasing strength of the impurity
potential and so it is difficult to attribute it to

b, Z

FlG. 1. Change in Fermi-surface volume expressed
as an apparent valence difference ~*for Cu(Zn) and
Cu(Ge) (open circles) and Cu(Al), Cu(Si), and Cu(P)
(solid points). The dotted line is the simple rigid-band
model and the solid line the coherent-scattering rigid-
band model. The dashed lines are deduced from phase
shifts calculated in Bef. 9.
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the appearance of bound impurity states in the al.-
loys of larger valence difference as has been sug-
gested by Prasad and Bansil. ." Such an explana-
tion would require not only that hZ* S 1.5 for
Cu(Ge) but also would imply a discontinuous
change of hZ* between Cu(A1), which has no
bound state, and Cu(Si) and Cu(Ge) which have. '
Indeed a clear distinction should be drawn be-
tween the localized density of states inside the
impurity cell and the propagating or coherent
states which determine the alloy Fermi sur-
face.'" The existence of the Fermi surface (as
shown for example by the observation of dHvA

signals) depends on the extent to which the im-
purity atoms scatter the Bloch states of the host
metal coherently, i.e., in the forward direction.
Dependent though this is on the strength of the
impurity potential, for any alloy system there is
a concentration of impurities sufficiently small
that a Fermi surface can be observed. At the
Fermi surface the change &k (measured normal
to the surface) of the coherent states is given by'

b. k = (hv& ) 'HeZ(k), (2)

where t, (k)/I, are the appropriately normalized
coefficients in the pure-metal wave-function ex-
pansion, and g, are the Friedel" or generalized"
phase shifts which represent the extra eigenstates
in the alloy and which are constrained by the
Friedel sum rule to account for the added states,
s.e. ,

(4)

The Friedel phase shifts are the sum of two
terms, the phase shift differences between im-
purity and host phase shifts, which characterize
the impurity potential, and a back-scattering
phase shift which includes the multiple scattering
by the host l.attice of the outgoing partial waves.

A rigid-band version of this model can be con-
structed with hZ = 1 by finding three phase shifts
(y, =0.177, 0.2455, 0.130) which have the cor-
rect Friedel sum and which reproduce, within
0.2%, the rigid-band area. changes" predicted by
Eq. (1). By integrating b, k over the Fermi sur-
face it can be shown that the rate of change of

where vg is the velocity and Z(k) the appropriate
self-energy. In the dilute limit this is given by
the forward-scattering T matrix of the impurity
which, for a dilute-al. loy Korringa-Kohn-Hostoker
model, can be written'

2 (k) = cT g &
= cQ, [t, (k)/I, ]siny, cosy, , (3)

Fermi-surface volume is then given by

c '6 V/Vo =6 Z*

= (2/m)Q, (2l+1) siny, cosy, . (5)

If for larger values of AZ the values of p, are
just increased in proportion to maintain the cor-
rect Friedel sum IEq. (4)] the anisotropy of the
area changes remains approximately rigid-band-
l.ike but, as the sing, cosp, terms saturate, the
calculated values of AZ*, shown in Fig. 1 by the
solid l.ine, deviate increasingly from the simple
rigid-band behavior. We call this a coherent- or
forward-scattering version of the rigid-band
model and, except for the case of Cu(P), it pro-
vides a remarkably good description of the experi-
mental results.

Friedel phase shifts for these alloys have re-
cently been calculated from first principles with
use of a self-consistent density functional ap-
proach. ' Corresponding values of AZ* for the
third and fourth rows, calculated according to
Eq. (5), are shown as dashed lines in Fig. 1.
While they are all approximately 0.4 lower than
the experimental values they mirror accurately
the rate of drop off at high values of ~Z. This
deficiency of 0.4 corresponds almost exactly to a
similar discrepancy in the Friedel sum of the cal-
culated phase shifts and presumably occurs be-
cause the calculation was made with any change
of potential restricted to the impurity cell and
with the phase shifts evaluated at the muffin-tin
radius of that cell. To recover the extra charge
requires a more complex calculation in which
charge transfer and perturbation of the surround-
ing host atoms are also considered. Such a cal-
culation would undoubtedly increase the value of
AZ* by approximately the same amount as the
Friedel. sum and hence would provide an extreme-
ly good fit to the experimental data.

It is interesting to note that although the Fermi-
surface changes are not rigid-band-l. ike, in the
sense that the volume change depends both on the
number of electrons added and the type of im-
purity, the total. change in the density of states,
given in the dilute limit by the Friedel phase
shifts, does seem to be approximately independ-
ent of the impurity type. This is consistent with
the Hume-Hothery behavior in the alloys because
the total density of states provides the driving
force determining the crystal structure and this,
unlike the Fermi-surface changes, depends only
on the electron/atom ratio and not the type of im-
purity.
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In conclusion, de Haas-van Alphen experiments
in dilute Burne-Rothery alloys show that the Fer-
mi-surface volume is too small to accommodate
all the electrons in the al.loy, i.e., the all.oys do
not follow the Luttinger theorem. The results
are not consistent with a concentration-dependent
Fermi surface in which some of the impurity
states are localized and removed from the Fermi
surface. They are, however, explained well by
a rigid-band type of model but with the Fermi
surface containing only the coherently or forward-
scattered states. It is emphasized that the vol. -
ume discrepancies are linear in concentration
and appear not when the impurities are sufficient-
ly concentrated to interact with each other but
when the scattering potential is sufficientl. y strong
to provide an appreciable fraction of incoherent
scattering. The discrepancies are then of the
same order of magnitude as the impurity concen-
tration.
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