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Computer-Simulation Dynamics of an Unstable Two-Dimensional Fluid:
Time-Dependent Morphology and Scaling
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From an isothermal molecular-dynamics experiment of an unstable two-dimensional
fluid undergoing phase separation, two principal growth regimes are observed: (1) spin-
odal decomposition with a wavelike morphology followed by (2) a transition to cluster
formation. and growth due to atomic condensation and cluster coagulation. The time-de-
pendent power-law behavior for the second growth regime is 0.5, in contrast to a con-
stant-energy simulation which yields a power-law behavior of 0.33. Details of the phase-
separation dynamics are discussed and compared with theory.

PACS numbers: 64.70.-p, 68.10.Cr

Motivated by our interest in phase-transition
phenomena in monolayer physisorbed films' and
guided by our recent linear hydrodynamic-fluctu-
ation theory for the early-time behavior of an un-
stable fluid, ' we have simulated spinodal decom-
position of a "two-dimensional" simple fluid by
molecular dynamics, the dynamics of the phase-
separation process being followed to very late
times (450 ps) and for a very large number of
particles (5041 Lennard-Jones atoms). Our com-
puter experiment consists of solving the equa-
tions of motion for a classical fluid of 5041 I en-
nard-Jones (LJ) atoms by numerical integration
with use of a fifth-order Nordsieck-Gear algo-
rithm. Our system of atoms is enclosed in a
parallelogram of density po' =0.325 and length
L/v = 133.8, with the standard periodic boundary
conditions being imposed in order to simulate an
infinite system. ' We note that the periodic bound-
ary condition prevents the occurrence of inhomo-
geneities of a size larger than the length of the
computational box. The integration time step is
chosen to be erat/v'=0. 004636, or 10 "s for ar-
gon. The fluid is initialized by placing the atoms
in a triangular lattice of density 0.325 (critical
density for liquid-vapor coexistence) with a Boitz-
mann velocity distribution corresponding to a
temperature kT/e = 0.45, which is slightly great-
er than the triple-point temperature. In this Let-
ter, we present the simulation details of an "iso-
thermal" computer experiment which was simu-
lated by renormalizing the atomic velocity dis-
tribution at each time step, in order to fix the
system's average temperature at 0.45, Our po-
sitional initialization guarantees that the system
starts with a uniform distribution of atoms in a
very unstable state of the two-dimensional fluid
phase diagram. The memory of the triangular
lattice is quickly lost (in approximately 3 ps).

We have also simulated the "constant-energy"
phase-separation process (i.e. , no renormaliza-
tion of the velocity distribution) and will present
the principal result after discussing the isother-
mal experiment.

In Fig. 1, a temporal sequence of atomic con-
figurations and their respective radial distribu-
tion functions g(r) is presented for selected times
during the dynamical phase-separation process.
The experimental uncertainty in g(x) is compar-
able to the linewidth of the drawing, this high ac-
curacy resulting from the large number of atoms
in the simulation. We note the short-range, liq-
uid-state atomic order represented by the pro-
nounced small-period oscillations for a radial
distance of 5v, this order becoming time invari-
ant after approximately 30 ps. In addition, a
damped oscillation with growing amplitude and
period is evident for all times, representing a
growing short-range order with a spatial scale
that is time dependent; this is simply a conse-
quence of the continuous partitioning of atoms in-
to condensed-phase regions which grow in size.
In terms of the Fourier transform of the radial
distribution function (the structure factor), the
short-range liquid peak appears at a wave num-
ber ka = 5.87 and saturates in amplitude after 30
ps. Also, a small k peak appears at 00=1.33
after 4 ps and continues to grow in amplitude by
over 2 orders of magnitude, eventually shifting
in kcr to 0.1 after 450 ps of the phase-separation
process. We obtain a coarse-grained radial dis-
tribution function g(r, f) by averaging over radial
intervals greater than the period characteristic
of the atomic short-range order, and arbitrarily
take as a measure of the coarse-grain "average
size" of the growing liquid regions the radial dis-
tance at which this distribution function first
equals unity. In Fig. 2 (upper, left scale, dots)
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this average cluster size R (t)/o as a function ot
time t is presented on a log-log plot. The num-
ber of points was chosen only to show the repre-
sentative trend for the time variation, even
though, in actuality, there is a point for each
time step of 0.01 ps. By arbitrarily seeking pow-
er-law growth regimes, we find an approximate
0.20-power dependence during the early stage of
the phase-separation process (0 &t & 30 ps), fol-
lowed by a change to a prominent one-half-power
dependence for the remainder of the simulation
(50 & t & 450 ps). A careful examination of the
time-developing interatomic morphologies for
these different growth stages suggests that they
may be characterized as "wave creation and
growth" until local maxima in density approach
the condensed-liquid density, followed by "wave
necking" or breakup leading to the creation and
subsequent growth of atomic clusters. One may
correctly state that the "spinodal mechanism"
comes to completion by about 30 ps since the den-
sity extremes have been achieved. After this
early time, coarsening dynamics by vapor con-
densation and/or cluster coagulation are the gov-
erning mechanisms.

The two-stage growth of clusters is also sub-
stantiated by examining two further characteris-
tics: (i) The magnitude of the minimum of g(r)
versus time is shown in the lower part of Fig. 2.
It clearly shows the two growth stages. (ii) From
the atomic configurations (Fig. l), we have also
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FIG. 1. Radial distribution function g(~) and atomic
configurations for various times after quench (z in units
of 0). The experimental uncertainty is comparable to
the linewidth of the drawing.

FIG. 2. Cluster size B(t) (dots, upper, left scale),
minimum of radial distribution function |";„(t)(dots,
lower, left scale), and the number of atoms in the larg-
est cluster (triangles, upper, right scale) as functions
of time {&in units of g).
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FIG. 3. Scaled radial distribution function {"{X), Eq.
(1), for the two growth regimes at various times:
(a) 12, 14, 16, 18, 20, 22, 24, and 26 ps and (b) 60,
80, 100, 200, 300, 400, and 450 ps.

studied directly the cluster size distribution us-
ing the algorithm outlined by Stoddard. 4 In Fig.
2 (upper, right scale, triangles), we show the
size of the largest cluster as a function of time.
This demonstrates the phenomenon of "wave
creation" up to about 30 ps, manifesting itself as
the appearance of a very large growing cluster
due to the highly interconnected morphology.
Subsequently, there is a "wave necking" transi-
tion region around 40- 50 ps. This is followed
by "isolated" cluster growth (compare Fig. 1, in-
sets).

A simple scaling of coarse-grained radial dis-
tribution functions with time is suggested if we
hypothesize that the density morphology remains
approximately topologically invariant during
coarsening, but the actual spatial variation of
density domains expands as R (t). We conclude
that within the framework of this picture, a time-
invariant radial distribution function G(X) is ob-
tained from the relation

G(X)= g(X, t), X=r/R(t),

where g(r, t) is the measured coarse-grained dis-
tribution function at time t. In Fig. 3, the scaled
function G (X) is presented for various times and
for the two different growth regimes. We see
very good scaling invariance for the two growth
regimes; at later times the invariance breaks
down for X & 2. This failure only reflects the fact
that the average nearest-neighbor separation dis-
tance does not scale exactly with average cluster
size R(t) when the system coarsens to a few large
clusters, a consequence of conservation of total
number of atoms. In actual fact, the scaled
coarse-grained distribution function G (X) for dis-
tances X&2 reflects principally the structure of

an individual "average" cluster of normalized
size X= 1.0, the cluster's structure described
by the peculiarities of radially averaging over
atomic positions in the cluster.

A very simple model of the inhomogeneous den-
sity distribution for the phase-separating system
contains the essential ingredients for describing
G(X). The model consists of a "mother cluster"
of size R, (t), surrounded by a shell of vapor con-
centric with the mother cluster and of outer radi-
us R, (t), which in turn is. surrounded by a uni-
form fluid of mean density with which the system
began its time evolution (and which "macroscop-
ically" is always constant'). For simplicity, we
assumed that the density variation in the model
system is such that (i) within the mother cluster
the density is p„ the final equilibrium liquid den-
sity, (ii) the density in the vapor shell is zero,
and (iii) the density in the outermost region is
p, the uniform mean density. The conservation
of the total number of atoms in the system im-
plies that R, = (p, /p„)"'R, . We conclude that
G (X) is a rather insensitive measure of the sys-
tem's morphology and that it is not very astonish-
ing that we find a scaling invariance for relation
(l). This scaling behavior in G(X) is reflected in
a scaling invariance for the growth peak in the
structure factor s(k); i.e. ,

S(K) —l = [s(k, t) —&j/R (t)', K =kR (t) .

Similar scaling behavior for three-dimensional
systems has been found for Ising binary lattices'
and real glass, ' where B ' is replaced by B '.

We have also completed a "constant-(total-)en-
ergy" molecular-dynamics experiment on the two-
dimensional Lennard- Jones fluid quenched to the
unstable region of the phase diagram; i.e. , this
experiment is, in most respects, identical to our
isothermal simulation except that the renormal-
ization of the velocity distribution is not per-
formed. We find that the late-stage growth law
for this constant-energy experiment follows a
time-dependent power-law behavior of 3, in
sharp contrast to the power-law behavior of 2

for the isothermal experiment. We have a theo-
retical argument supporting the different growth
laws observed for the constant-temperature ex-
periment and the constant-energy experiment,
respectively, based on an asymptotic analysis of
cluster growth in a one-component system. ' Our
analysis is similar to that done by Lifshitz and
Slyozov' for binary mixtures.

To summarize, we find scaling of the coarse-
grained radial distribution function (or structure

925



VOLUME 49) NUMBER I) PHY'S ICAL RKVIKW LIITTKRS 27 SEPTEMBER 1/82

factor) with two principal growth regimes, spi-
nodal decomposition until local density extremes
approximate the densities of the thermodynamic
coexisting phases but with a wavelike morphology
of wave number equal to unity, followed by a
transition to cluster formation and growth due to
atomic condensation and cluster coagulation. For
the later stage of the phase-separation process,
the time-dependent power-law behaviors for the
constant-temperature and constant-energy exper-
iments are 0.5 and 0.33, respectively; these de-
pendences may be rationalized from a theory for
vapor accretion on two-dimensional clusters in
a "one-"component supersaturated vapor. ' The
t"' dependence also arises in the cluster coagu-
lation mechanisms in two dimensions, ' but the
late-stage trajectory pictures suggest that this is
not a governing coarsening process.
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Dynamic Monte Carlo Simulation of an Entangled Many-Polymer System
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The dynamics of a system of long polymer chains is investigated numerically with
Monte Carlo dynamics. By use of a lattice model of polymers interacting via hard-core
potentials, much longer polymers have been investigated than has been possible previous-
ly. The correlation functions calculated are in agreement with de Qennes's "reptation"
hypothesis, and differ strongly from Rouse-like behavior.

PACS numbers: 61.40.Km, 64.60.Ht, 66.10.Cb

Polymers of high molecular weight and at high
concentrations exhibit unusual behavior in many
of their properties. The viscosity' and diffusion
coeff icient' both exhibit power-law dependences
on the molecular weight, whose exponents are
independent of the chemical structure of the
molecules. Furthermore, the viscoelastic be-
havior of such systems also appears independent
of microscopic structure. In order to account for
such phenomena, de Gennes' and Doi and Ed-
wards' have constructed a semiphenomenological
theory to explain the behavior of entangl. ed poly-
mers. " The theory assumes that a l.ong polymer
at high concentration has its motion restricted
by a "tube" with diameter D, that is assumed in-
dependent of molecular weight, and is dependent
on the chemical structure of the polymer. This is
related to the notion of "entanglements. " Between
entanglements, the polymer moves as if it were

in a viscous fluid. That is, over short distances,
the effect of all other polymers is modeled as a
fluid. The distance between entanglements is ap-
proximately the tube diameter so that the "en-
tangl. ement length" N, , which is the average num-
ber of segments of polymer chain between two
entanglement points, is D'/a', where a is the step
length of the polymer. The motion of a single
polymer in a highly viscous fluid can approximate-
ly be described by the Rouse model. .' It predicts
that a portion of polymer chain n segments in
length will relax in a time of roughly n'/W,
where W is a jump frequency. Thus for observa-
tion times shorter than N, '/W an entangled poly-
mer should move much l. ike a free one The re-
laxation time for an entangled polymer with 1.
segments is about L'/W, which is the time it
takes a "kink" to travel from one end of the tube
to the other end. The transf er of kinks from one

926 1982 The American Physical Society


