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Close Relation between Localized-Electron Magnetism and the Paramagnetic
Wave Function of Completely Itinerant Electrons
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What is commonly called the Gutzwiller wave function ¢, an approximate ground state of
the single-band Hubbard Hamiltonian, is considered here for N-site N-electron rings, when
the number D of doubly occupied sites is small (N =6, 10, 14, 18). For D—0 spin correla-
tions in y surprisingly close to the exact values at zero bandwidth are found (i.e., those of
the antiferromagnetic Heisenberg-model ground state). But the energy is grossly in error.
A simple modification of ) reproduces the exact energy with remarkable accuracy.

PACS numbers: 75.10.Jm, 75.10.1p

The single-parameter correlated-electron
ground state due to Gutzwiller,' and appropriate
to the single-band Hubbard model,''? is

¢=ﬁ1[1-(1—n)n“n”]¢. (1)

Here ¢ is the familiar Slater determinant which
is the ground state of the electrons when nonin-
teracting and moving in a single tight-binding
band, #;,is the occupation-number operator for
site 7 and spin 0, N is the number of sites, and

7 is the variational parameter. For n=1, ¢ is of
course the ground state for zero interactions. In
the case of the half-filled band n=0 leads to the
correct ground-state energy in the zero-bandwidth
or atomic limit,’ namely, zero, since when 7=0,
¥ has only singly occupied sites. But this knowl-
edge that the energy of ¢ is zero tells one only
that ¢ is somewhere in the 2¥~-dimensional space
of states in which only singly occupied sites oc-
cur, and therefore gives no hint as to how close
Y is to the exact ground state, within this space.
In this Letter we report the results of what we
believe is the first calculation of the kind needed
to answer this question. We also consider the
approach of the energy to zero as well as the cor-
responding wave-function behavior.

For simplicity we consider the half-filled—band
case of linear chains with nearest-neighbor hop-
ping and periodic boundary conditions and com-
pare our results with the corresponding exactly
known quantities. We find excellent agreement
for the spin correlations for small x=1/1/U,
where ¢ and U are the hopping integral and inter-
action strength, respectively. This is surprising
since ¢ is firmly based only on the opposite case
x —, The energy, on the other hand, is grossly
in error for small x, We uncover the reason for
this error, introduce a new wave function ¥
which is a simple modification of ¢, and show
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that its energy is in very close and, again, sur-
prising agreement with the exact energy.

It is convenient to consider the expansion of
@ in the basis of Slater determinants with Wan-
nier functions occupied (localized basis).! It is
then clear that ¢ has a unique expansion

Q=P+ P+ @yt oo, (2)

where ¢, is an eigenstate of

. N
D=Z}n”n” (3)

i=1

with eigenvalue D, Equation (1) becomes

¢=<P0+77901+T}2(P2+“'. (4)

We shall calculate the spin-spin correlation func-
tion

4;=8;.8:412), (5)

where s,, =3(n;4=n;;), and the energy E = (H);
the angular brackets signify the expectation val-
ue in . We limit ourselves to rings with odd
N/2 to avoid degeneracy® of .

Consider now the atomic limit, where

ql:(géoysizsi*lz(po)/((po, ¢’o)- (6)

Although we will skip the details* here, it is
worth mentioning that for N = 6 the explicit cal-
culation of (6) is very simple. Of the 6!/(31)2=20
states in the expansion of ¢, in the localized
basis, symmetry reduces the number with dif-
ferent coefficients to only 3, and these coeffi-
cients are easily computed. We find ¢, = -k, ¢,
=&, q,= - gy for the correlation function. It is
already quite interesting to compare these with
the exact results, namely® the correlations in
the antiferromagnetic (AF) Heisenberg-spin-
model ground state. The latter were obtained by
Bonner and Fisher® (BF). The small percentage
differences which we find are shown in parenthe-
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TABLE 1. Spin-spin correlation function g; in the atomic limit of the
Gutzwiller wave function. Numbers in parentheses give a comparison,
as percentage errors, with the corresponding values in the Hubbard- -

model ground state.

N
l 6 10 14 18
1 —-0.1555... (0.10) —0.15025 (0.18) —0.14883 —0.14825
2 0.0666... (—3.9) 0.05985 (—5.8) 0.05814 0.05746
3 -0.0722... (6.5) —0.05229 (9.5) -~ 0.04821 - 0.04666
4 0.03856 (~11) 0.03381 0.03209
5 —0.04175 (11) - 0.03269 —0.02979
6 0.02744 0.02417
7 ~0.02932 —0.02409
8 0.02136
9 - 0.02259

ses next to the respective g values in the N=6
column of Table L
The remainder of our results for the spin cor-

relations are also shown in this table, The near-
est-neighbor correlation ¢, is seen to be amaz-
ingly close to the exact value in those finite-N
cases where a comparison is possible. To com-
pare with the exact value? for N—«, we extrap-
olated by using a refinement?® of the 1/N? fit
used by BF, obtaining the estimate

limg, =-0.1474 (Gutzwiller), (7)

N
with an estimated uncertainty of a few parts in
the last figure. This value is about 0.2% higher
than the exact value, That it is higher satisfies
the check that for any N, the nearest-neighbor
correlation is not less than that in the Heisen-
berg ground state, i.e.,

4; = 4, Heiss (8)

by the variational principle plus the symmetry
under translation and spin rotations.

The errors in the more-distant-neighbor corre-
lations are much larger, but are still small, In
particular, the value of ¢, extrapolated to N -«
is about 7% lower than the exact value quoted by
Takahashi.? Thus one might worry that the large-
! behavior will be badly approximated by the
Gutzwiller ¥, To check this we followed BF and
calculated ¢ .;(N), namely, the average of gy /sl
and IqN/2—1|9 plotting it versus 1/N as shown in
Fig. 1, where it is compared with the known exact
values.® It is seen that the extrapolation

G in(N) =0 (9)

as N -« is at least as secure as the identical
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extrapolation® for the Heisenberg ground state.
According to Bonner,® the latter was proved
later, rigorously, by Baxter.'®

We also note that the various detailed qualita-
tive idiosynchrasies of the correlation function
noted by BF, namely, the oscillation of [¢,| about
a smooth function and the fact that [gy/,|> [ gyp-il
even though |g,| monotonically decreases for I
=1,2,...,N/2-1, are also reproduced by ¢.
Thus we conclude that the spin-spin correlation
function given by ¢ is an excellent approximation
to the exact results.

We use Eq. (4) to calculate the energy E, choose
7 to minimize it, and expand the result in powers
of n. We thus find the leading behavior for small

N
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FIG. 1. Plot of ¢ i, (N) vs 1/N. The atomic limit of
the Gutzwiller wave function (circles) is compared with
the Heisenberg ground state from Ref. 6 (triangles).
Extrapolation yields an estimate of the long-range or-
der.
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t/U to be

E=-Nai®/U, (10)
where

a=(@y, k 9)2/N(wo, 991, ¢) (11)

and % is the kinetic energy operator divided by ¢
(so the Hubbard Hamiltonian is ¢2+UD). Calcu-
lations involving ¢, are much more complicated
than those of ¢, since many more states appear
when ¢, is expanded in the localized basis.
Nevertheless, they have been made for the same
set of N values. We find that the energies are
grossly in error, « being roughly one-half the
exact value® for N=6 and 10. The source of this
error can be found on examination of the wave
functions,* namely, the average distance between
the doubly occupied site d and the empty site e
in ¢, is considerably larger than the exact value
of one lattice spacing,* which is the value in l%(po.
This finding plus recognition of the fact'* that
(1) may be written ¥ =nP¢ naturally lead us to de-
fine a new wave function

¥ =hSy=ndnby, (12)

where % is a variational parameter and Q is the
number of d sites which do not have an e neighbor;
a formal expression for @ can be found.* In the
limit # -0, ¥ is the wave function of Eq. (1) modi-
fied by eliminating all terms in which the d and e
sites do not occur in nearest-neighbor pairs. It
belongs to the more general class of wave func-
tions-introduced in Gutzwiller’s third paper.’ The
energy of this new state ¥ is extremely close to
being exact; the corresponding a coefficient o
has errors of only about 0.5% for the cases N=6,
10, which can be checked. The excellence of this
result is again surprising in view of the fact that
enough structure remains in the %z =0 limit of 2%y,
to make a much smaller value of a possible, con-
sistent with the symmetry of ¥,

Our « values can be extrapolated to N =« rather
comfortably. The energy coefficient «, varies
very nearly linearly® in N™2 (as does the exact
energy®) leading to

lim a,=2.750

N>

(13)

with an uncertainty of a few parts in the last fig-
ure. This differs from the exact value by only
-0.83%. The coefficient a corresponding to the
Gutzwiller wave function, however, varies near-
ly linear in 1/N giving an extrapolation®* of «
—-0.70+0.01, an error of almost a factor of 4.
Since the modification in ¢ affects ¢, and not ¢,

the corresponding modification in ¢, is of higher
order in |7 |/U than the zeroth-order results ob-
tained above.

While the relation of our results to the litera-
ture! ' ~2' will be discussed in detail elsewhere,*
we comment briefly here. In their related work
on the metal-insulator transition, Brinkman and
Rice'? used the Gutzwiller state ¢ plus an approxi-
mation, due also to Gutzwiller,' needed to calcu-
late the average energy of . They found that
minimization of this energy led to E=0 for all x
<x,(a positive number). As they were aware,'?
this indicates an error in view of the expectation
that the ground-state energy for the Hubbard
model ~#2/U for small enough x.° Whether this
error was due to the form of ¥, or to the approxi-
mation used to calculate the energy, could not be
answered from the considerations made at that
time. Our present results shed some light on
this question. In one dimension the situation is
clear: We found, for small x, that while E is
proportional to #2/U the coefficient « is far too
small, an error due to the form of ¢; but o
extrapolated to N == is not zero, suggesting that
the approximation used to calculate E is also in
error. We expect that the main deficiency found
in ¢, too weak d-e binding, will remain in higher
dimensions. It is not clear if « will be zero in
two or three dimensions (for N —),

There have been some attempts'!***°to im-
prove upon the work of Brinkman and Rice'? by
generalizing the wave function of Eq. (1) to “allow
for” antiferromagnetism. The implicit assump-
tion is thereby that ¥ is paramagnetic. In view of
the results obtained above, it is quite possible
that ¢ is AF in higher dimensions. Thus the
assumption’''!3!°that ¥ is not AF is called into
question.

The approach of the present paper has potential
applicability to a variety of problems in the mag-
netism of strongly correlated electrons. For
example, a moment’s reflection shows how to
modify ¢ in order to introduce into the spin
Hamiltonian anisotropy or competing interactions
such as first- and second-neighbor antiferromag-
netic interactions (problems of current interest).
The large-I behavior of g, for linear chains could
be studied and compared with recent results of a
different approach.?’ The treatment of excited
states along lines similar to that of the present
paper appears promising. The present approach
applied directly to the non-half-filled single-band
Hubbard model with small ¢/U (although here
allowing nonzero values of the total z component
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of spin in ¢ should be considered). The final po-
tential application we mentioned is the two-band
Hubbard model called the Anderson-lattice model,

currently the vogue in the mixed-valence problem.

One of us (T.A.K.) was the recipient of an Alex-
ander von Humboldt Senior Scientist Award.

(3)permanent address: Michigan State University,
East Lansing, Mich. 48824,

M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963),
and Phys. Rev. 134, A923 (1964), and 137, A1726
(1965).

%J. Hubbard, Proc. Roy. Soc. London, Ser. A 276,
238 (1963).

3D. Cabib and T. A. Kaplan, Phys. Rev. B 7, 2199
(1973).

4T, A. Kaplan, P, Horsch, and P. Fulde, to be pub-
lished.

P. W. Anderson, Solid State Phys. 14, 166 (1963);
J. H. Van Vleck, in Quantum Theory of Atoms, Mole -
cules, Solid State (Academic, New York, 1966); T. A.
Kaplan, in Magnetism and Magnetic Materials —1971,
edited by D. C. Graham and J. J. Rhyne, AIP Confer-
ence Proceedings No. 5 (American Institute of Physics,
New York, 1971), p. 1305; M. Takahashi, J. Phys. C
10, 1289 (1977).

6J. Bonner and M. E. Fisher, Phys. Rev. 135, A640
(1964).

"H. A. Bethe, Z. Phys. 71, 205 (1931); L. Hulthén,
Ark. Mat., Astron. Fys. 26A, No. 11 (1938).

SH. W. J. Bldte, Physica (Utrecht) 93B, 93 (1978).

%J. C. Bonner, J. Appl. Phys. 49, 1299 (1978).

YR, J. Baxter, J. Stat. Phys. 9, 145 (1973).

i, Ogawa, K. Kanda, and T. Matsubara, Prog.
Theor. Phys. 53, 614 (1975).

12w, F. Brinkman and T. M. Rice, Phys. Rev. B 2,
4302 (1970); T. M. Rice and W. F. Brinkman, Phys.
Rev. B 5, 4350 (1972); W. F. Brinkman, Phys. Fenn.
8, 253 (1973).

133, Florencio, Jr., and K. A. Chao, Phys. Rev. Lett.
35, 741 (1975); K. A. Chao, Solid State Commun. 22,
737 (1977).

14T, Ogawa and K. Kanda, Z. Phys. B 30, 355 (1978).

5G. Stollhoff and P. Fulde, J. Chem. Phys. 73, 4548
(1980); P. Horsch and P. Fulde, Z. Phys. B 36, 23
(1979).

16p, Horsch, Phys. Rev. B 24, 7351 (1981).

1p. Joyes and S. Ortoli, J. Phys. Chem. Solids 41,
1329 (1980),

187, Okiji, H. Takano, and S. Miyazima, J. Magn.
Magn. Mater. 15, 439 (1980).

153, Bernasconi, Phys. Konden. Mater. 14, 225
(1972).

20F. Takano and M. Uchinami, Prog. Theor. Phys. 53,
1268 (1975).

2A. Luther and I. Peschel, Phys. Rev. B 12, 3908
(1975); F. D. M. Haldane, in Electron Covvelations
and Magnetism in Navvow -Band Systems, edited by
T. Moriya (Springer-Verlag, Berlin, 1981), p. 150.

Image of the Electron Energy-Loss Function in Light Emitted from Tunnel Junctions

D. G. Walmsley, H. F. Quinn, and P. Dawson
School of Physical Sciences, New University of Ulster, Coleraine BT52 1SA, Novthevn Ireland
(Received 29 April 1982)

Tunnel junctions of the type Al-I1-M (M = Au, Cu, Ag) prepared on CaF,-roughened sub-
strates emit broadband visible light. It is found that the light intensity variation with wave-
length in the range 350 to 700 nm images the electron energy-loss function, Im(—1/¢), of
each metal M as calculated from its optical constants. It is concluded that surface plas-
mons are damped above the interband transition in Au at 2.5 V and in Cu at 2.25 V. The
findings are in harmony with data from surface-enhanced Raman spectroscopy.

PACS numbers: 71.36.+¢c, 73.40.Gk, 85.60.Jb

Tunnel junctions with randomly rough metal
surfaces emit broadband visible light when they
are subjected to a voltage bias.! The maximum
energy of the emitted photons, Zv,, .y, is deter-
mined by the applied bias, V,, according to the
quantum condition v, =eV,. Initially® it was
thought that the tunneling electrons excite slow
junction plasmon modes which then decay by pho-
ton emission. More recent studies,? particularly

on junctions with sinusoidal surface profiles,**
point to fast surface-plasmon polaritons (SPP) as
the intermediate state. Possible effects due to
local plasmon modes excited in small particles
also have been reported.” A theoretical descrip-
tion of these processes has been developed by
Laks and Mills (LM).°

As yet, however, there is no satisfactory expla-
nation of the spectral form of the light emitted
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