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not the velocity autocorrelation function.
6The algebra required to obtain the friction coefficient

is formidable. I include the expression here because it
was obtained by a completely independent calculation
from that of Ref. 5 and follows the notation of Refs. 2

and 3. The many differences in notation between Ref. 5
and Refs. 2 and 3 make comparison difficult. Also I
hope to simplify the task of comparing the results for
"stick" boundary conditions to those of "slip" boundary

conditions obtained in Ref. 2.
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An exact Monte Carlo method for calculatirg thermodynamic properties of quantum spin
systems is described. Results for one-dimensional ferromagnetic and antiferromagnetic
systems and for three-dimensional ferromagnetic systems show that the method can be
used to study quantum spin systems as extensively as classical spin systems are studied
with conventional Monte Carlo methods.
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In the last decade Monte Carlo calculations
have proven to be a very valuable tool in deepen-
ing our understanding of classical spin systems. '
This cannot be said for quantum systems. Re-
cently, however, there has been considerable
interest in the development of Monte Carlo pro-
cedures for these systems. ' These methods use
the fact that a d-dimensional quantum system can
be mapped onto a (d+I)-dimensional classical
system through the use of Trotter's formula. '
This mapping is exact only when the additional
"time" dimension is infinite, which of course
cannot be realized on a computer. This means
that for a Monte Carlo calculation one has in
addition to the limited size of the physical sys-
tem also the problem of a finite time dimension.

A method which does not possess this difficulty

!

was proposed by Handscomb for the ferromag-

netic Heisenberg system. In this Letter I gen-
eralize the method and demonstrate its useful-
ness for both ferromagnetic and antiferromag-
netic interactions.

I study the spin- —,
' Heisenberg Hamiltonian

N N

3C=-2ZQS; S;+,- gPH Qs, ',

or, expressed in terms of permutation operators
E(z, j) =(I+4S,. ~ S,. )/2,

dN N

R= —J QE(i, i+I) —gj3H g S,.'+ —JN,
i =1 i=1 2

where (dN) is the number of interactions. In
neglecting the constant I write this as

X=X -ZP,.E,
The partition function can be expanded as follows:

g, =Tre- 'z= Q (a)" — PTr(E; . . .E; exp(-~/kT)j,I'I "

n=O ~ C„

where pc denotes the sum over all possible
n

sequences (i, . . .i„). The + signs correspond to

the ferromagnetic and antiferromagnetic cases.
With the definition

rr(C„)=, Tr(E, . . .E, exp( ie'/kT))-(PI'I)"

we have Z, =g Qc (+)"m(C ). Similarly we

Tr(Oe I» )=P„Q Q(C„)v(C„)

with

(*)"Tr(OE;, . . .E; „exp(-8C'/kT) j
Tr(E, . . . E, exp( X/kT))-
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With these definitions we have for the quantum
mechanical expectation value

Tr(Oe-""' j &a&„
T.(.-'~" -((.) &

where the angular brackets with subscript "cl"
denote a classical expectation value over the dis-
tribution &(C„).

The usefulness of this mapping is strongly de-
pendent, in general, on the form of the 0's and

For the Heisenberg Hamiltonian it is easy
to calculate that

( )
(PIJ i)" ~

i „gPHa,

Here k(C„) is the number of cycles in (E;, .. .E; j
and a, is the length of a cycle. The energy opera-
tor can be incorporated into the distribution
~(C„) and therefore calculated as the average
number of permutations

E(H) = -HM(H) —&n&,~/p+ 2d JN.

The magnetization is given by

M(H) = &P,. (gP/2)a, . tanhja, MPH/2kT) &„.
The zero-field susceptibility and specific heat
are somewhat more complicated, but reduce at
zero field to

V. =(kr) -'&Z, (-.'gP, )'&„,
C„=k[& '&„-& &„'-& &„].

To realize a Markov chain with limiting distribu-
tion v(C„) we need to define the transition prob-
abilities. Starting from a random sequence of
permutation operators (E, . . .E, j, we add a
randomly chosen permutation operator at a ran-

TABLE I. Ferromagnetic energy, susceptibility,
and specific heat in one dimension for several system
sizes. The temperature is J/kT = 1 and the magnetic
field is zero. The last line gives the exact value ob-
tained by Bonner and Fisher for N = 10. For other val-
ues, cf. Figs. 10 and 11 in Ref. 6.

domly chosen position in the sequence or remove
a randomly chosen permutation from the sequence.
This is a modification of Handscomb's procedure
in which an operator is added only at the end and
removed from the beginning. In case of nonac-
ceptance of a removal, cyclic permutation was
applied to provide a better covering of sample
space. This procedure destroys the structure
of the sequence faster and should be better, par-
ticularly for longer sequences. Because the
trace is invariant under cyclic permutation, this
is still a proper Markov chain.

For the procedure described above I define the
following tr ansition probabilities:

6'(C. -C...) =p( )f( )T(C...),
t(C„„-C„)=[1-f(n+1)]T(C„).

Here f(n) is the probability of adding a permuta-
tion to a, sequence of length n and p(i) is the
probability of choosing permutation i,. For the
acceptance T(C„„)we find'

I f(n+-I) ~(C„„)i'(c„„)=min(i,

In the calculations presented I have taken p(i)
= I/N and f„=(1+An) '. Other possibilities are
(f„=2, fo=1) or (1 —f„)/nf(n —1) =X. Test runs
with these choices showed that all forms g'ave

equally good results. The constant A. is an esti-
mate for I/(n&, ~ and is recalculated in the pro-
gram. If n —= &n&,~ and X =1/&n&, ~ we have f„=-,'

so the probability of adding or removing a per
mutation operator is practically equal around
&n&,).

These one-dimensional results are compared
with those of Bonner and Fisher, ' who diagonal-
ized the Hamiltonian f'or small systems numeri-
cally. For the ferromagnetic case I calculated
the energy, specific heat, and the susceptibility
at zero field for several temperatures. The re-
sults for both open and closed chains are in

-E/N J 2&TX/g P N C„/~N
TABLE II. Susceptibility for a one-dimensional fer-

romagnetic ring {N = 8) at J/kT = 1. Compare with
Fig. 22 of Ref. 6.

3
4
5

8
10
BF

0.450
0.412
0.389
0.379
0.376
0.375
0.375

0.802
0.881
0.913
0.926
0.933
0.934
0.934

0.135
0.170
0.156
0.140
0.133
0.129
0.129

gPII/2k T

0.25
0.50
0.75
1.00

2kTy/g'P N

0.711
0.381
0.195
0.104
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TABLE III. The antiferromagnetic energy and sus-
ceptibility for several temperatures at zero field. The
numbers in parentheses are from Bef. 6.

TABLE IV. The susceptibility, energy, and specific
heat for a three-dimensional ferromagnetic system of
size ¹ The temperature is J/AT = 0.3. RBW denotes
the series-expansion results (Ref. 7).

+r/fzf -z/J~z(
-E/NkT T Xlg'P'&

5.0
2.6
2.0
1.5

O.163 (O.162)
0.314 (0.318)
O.415 (O.4O9)

O.52 (O.516)

o.o40 (o.o4o)
o.o61 (o.o61)
0.068 (0.068)
0.07 (0.073)

complete agreement with their results. As an
example I show in Table I the N dependence of
the various quantities. Excellent agreement was
also obtained for the susceptibility in a magnetic
field (Table II).

For the antiferromagnetic case, the alternating
signs in the expressions for the observable raise
additional problems. The results for the energy
and susceptibility are given in Table III. For
high temperature there is good agreement with
exact results. At lower temperatures, however,
it becomes more difficult to obtain good statis-
tics.

In three dimensions, I have studied the dis-
ordered phase for ferromagnetic spins on a sim-
ple cubic lattice. I compare the results for J/kT
=0.3 with high-temperature series expansions. '
This temperature is chosen such that the trun-
cated series (eight or ten terms) is still accurate.
For the energy and susceptibility the agreement
is excellent. Just as for classical spins the spe-
cific heat is somewhat harder to calculate. Also,
calculations for higher and lower temperatures
have been made. In these eases as well, the
agreement with the series expansions is excel-
lent as long as no truncation errors occur.

The results presented here show clearly that
the method provides the possibility for studying
quantum systems as extensively as their classi-
cal counterparts. Generalization to a noncon-
stant coupling parameter is trivial and the appli-
cation to fermion lattice models through the use
of a Jordan-Wigner transformation is straight-

27
64

125
216
343
512
729

1000
RXQV

0.195
0.173
0.168
0.168
0.167
0.167
0.168
0.168
0.167

1.433.
1.532
1.547
1.554
1.553
1.556
1.551
1.554
1.550

0.187
0.157
0.134
0.137

0.137

forward. In contrast to the approximate methods
based on Trotter's formula, the present method
yields, in principle, numerically exact results
for a chosen system size N. A more extensive
account of the method and further results will be
published elsewhere.

The author thanks Professor K. Binder for
stimulating discussions.
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