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Localization in an Incommensurate Potential: An Exactly Solvable Model

D. R. Grempel, Shmuel Fishman, and R. E. Prange
Department of Physics and Center forTh'eoretical Physics, University of Maryland,

College I'ark, Maryland 20742
(Received 20 May 1982)

The exact eigenstates of a one-dimensional tight-binding model with a periodic diagonal
potential that can be commensurate or incommensurate with the lattice are found. If the
period is incommensurate, all the eigenstates are localized. The localization length and
the density of states are identical to those of a related disordered system. The case of a
commensurate potential, for which all the states are extended, and the approach to the in-
commensurate case are also discussed. The solution is achieved by mapping the model into
a time-dependent quantum problem in which the potential is periodic in time.

PACS numbers: 71.50.+t, 05.30.-d, 71.55.Jv

Quantum particles (electrons) subject to a sum
of potentials which are periodic but incommensur-
ate with one another present an interesting theo-
retical and experimentally realizable problem.
Systems for which this problem is relevant in-
clude' incommensurate superlattices, charge-
density waves, the electronic properties of the
mercury chains in Hg, ,AsF„and the problem of
two-dimensional electronic systems in a magnetic
field. An intriguing theoretical. aspect is that
such an incommensurate potential. presents a
case that is intermediate between a random po-
tential and a perfectly ordered crystal. . In one
dimension, a random potential is known to local-
ize all states (Anderson localization). ' In an in-
commensurate potential there can be, in principle,
both localized and extended states with the inter-
esting possibility of a metal-insulator transition
as a function of energy and/or strength of the po-
tential. Aubry and Andre' have produced a self-
dual model. that exhibits this behavior. In their
model all the states are either local. ized or ex-
tended depending on the strength of the potential
as measured by the bandwidth. Other models have
also been studied by a variety of numerical and
analytical techniques' with similar results. In
this Letter we present exact solutions for a class
of problems for which the incommensurate po-
tential always localizes al. l the states.

We study a one-dimensional tight-binding model
with the Schrodinger equation

Hu =T u + g Wu, „=au
r &O

The lattice sites, m, are specif ied by integers
and tacitly have period unity while T is a "diag-
onal. " potential which can be chosen in several
ways. If the T 's are taken to be random from
a distribution P(T) and W„ is restricted to near-

est-neighbor hopping, Eq. (1) is the well. -known
Anderson model with diagonal disorder. ' T can
also be chosen to be periodic in rn with a period
that is either commensurate or incommensurate
with the underlying lattice. For example, if T
is chosen to be proportional to cos(7m) and w/2m

is irrational, Eq. (1) becomes the case of an in-
commensurate potential recently studied in Ref.
3 ~

No exactly solvable case of Eq. (1) with random
T is known, and indeed, one may not exist, if by
exactly solvable it is meant that the wave func-
tions (ug and energies e are given. The case of
a general periodic but incommensurate potential
seems just as intractable. We have recently
pointed out, ' however, that there are special
choices of the potential for which much progress
can be made. In particular we have shown that
if, for fixed ~ and v, the T 's are taken as T
= tan[(~ —m'v/2)/2] (which makes them pseudo-
random rather than random in the measure the-
oretic sense), the static problem posed by Eq.
(1) can be mapped into the dynamical probl. em of
a periodically kicked quantum rotator. ' The kin-
etic energy of the rotator is H, =7'L'/2 where the
angular momentum operator I. = —i 8/ak and —~
~ k ~ m . The potential energy, which gives the
rotator a 5-function kick at integer times, is
V(kg(t), with b. (t) =P „6(t—s) and V(k) a peri-
odic function of k related to the Fourier trans-
form of the hopping potential. in Eq. (1), W(k)
(see below).

In the present paper we consider Eq. (1) with
T = tan[(u& —mr)/2]. This corresponds to a po-
tential. that is periodic but not necessarily com-
mensurate with the underlying lattice. By apply-
ing to this case the methods of our previous pa-
per this problem can be shown to be equivalent
to another periodically kicked quantum system
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for which we are able to find an exact solution.
This new dynamical problem is defined by an
unperturbed Hamiltonian that is l.inear in the
angular momentum, i.e. , &,=-i7.s/&k. The time-
dependent Schrodinger equation is

i —((k, i)+i7. —((k, i) = V(k)h(t)g(k, t).8
~

8

If we choose W(k) = Kcos(k) the corresponding
tight-binding problem involves only nearest-
neighbor hopping with strength K/2 and, for sim-
plicity, we confine ourselves to this potential. in
most of what fol.lows. We show that all the eigen-
states of (1) are localized when ~/2v is irrational
and extended when it is rational. The localiza-
tion length y

' in the irrational case is identical
to that in the Lloyd model" for disorder, for
most values of ~ As .~/2m approaches a rational
p/q, however, there is a tiny region, of size
proportional to e ~', for which the eigenstates
have a much larger localization length. This set
of values of ~ giving anomal. ous localization
lengths has the property that it is open and every-
where dense, although small in total measure.
It is thus not a set of a type very often encounter-
ed in physics, al.though it is very closely rel. ated
to the so-called resonance condition encountered
in Kolmogorov-Arnol. d-Moser theory. '

To establish the connection between Eqs. (1)
and (2) we start by noting that the potential, in

Eq. (2) is periodic in time. Therefore, we only
need to consider solutions of definite quasiener-
gy,

' ce„, of the form

P„(k,t) = ezp(-i~, t)u, (k, t),
where u„(k, t)=u„(k, t+1). Furthermore, as we
noted in Ref. 5, it suffices to consider the values
u„'(k) just after (before) a kick. The relation-
ship u„'(k) =e 'v'"'u„(k) holds Anoth. er relation
may be obtained by integrating the Schrodinger
equation between kicks to find

u„(k)=(2w) 'f dpi' exp[im(k -p)]
x exp(iE )u„'(p)

with E = ~ —m~. We now choose V(k) = —2
x arctan[W(k) —&], eliminate from the previous
equations u' in favor of u, (k) =u, '(k)/[1+ iW(k)],
and write the equation of motion for its Fourier
transform,

u„, = (2m) 'f„dk exp(ink)u„(k).

It is easily found that u„„satisfies Eq. (1) with
T = tan(E /2). For finite-range hopping W„ the

long-distance behavior of u and u' is similar. In
what follows we concentrate on u, '(k).

The feature that makes Eq. (2) exactly solvable
is that its general solution for integral. time s can
be obtained by iteration of

('(k, s+ 1}= exp[- iV(k)]g'(k —v, s).
States of definite quasienergy then satisfy

u, '(k) = exp] i[a, —V(k)] Iu, '(k —7). (4)

The properties of the solutions u, depend on
whether ~/2m is rational or irrational. We con-
sider the latter case first. Since ~u, '(k)~ = ~u„'(k
—w)~ and, for integral n, m, (n~+2vm) covers
densely the interval [—m, v], we may write

u„'(k) = exp[i@ „(k)] . (5)

The real quantity q&, (k) must satisfy q „(k+2m)

=y„(k)+ 2mv with v an integer in order for the
wave function to be single valued. From Eqs. (4)
and (5) and this condition we find

cp, (k)=vk+ P V„ (6)sinnT/2

where V„=—V„(e)= (1/2m) f,dk V(k) exp(ink). The
allowed values of ~ are discrete and given by ~„
= [V,(e„)+vv] mod(2n). For a given choice of u&,

this is an implicit equation for the energy levels
e„of the tight-binding problem. Thus, for w/2n

irrational the eigenvalues of Eq. (1}are denumer-
able (although everywhere dense). From Eq. (5)
we conclude that

(2m) 'J dk iu„'(k)i'= Q iu„„'i'(
w 00

i.e. , all the states are normalizable and, conse-
quently, localized. Notice that so far we have not
specified the hopping matrix elements. In order
to make further progress the V„'s must be speci-
fied. For the nearest-neighbor model a tedious
but straightforward calculation gives

V„=(2/n)exp(- yn) cos[gn+-,'(n —1)m]

for n&0, and V, =2p, , where

2Kc hy08=[1+(E+K) ] +[1+(E—K) ]

sing = e /(K coshy).

The series in Eq. (6) is absolutely convergent for
almost all irrational values of 7./2m The excep.-
tion is for a Liouville number for which there
exists an infinite sequence of integers q, such
that d(q, ) = q, sin(~q, /2—) ~ exp(- yq, ). These num-
bers, however, form a set of measure zero and
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we discuss them no further. If w/2m is not too
close to a rational. number (in a sense to be de-
fined below), d(n) -O(1) for all n and one may
show, by Fourier transformation of Eq. (5), that
lnlu„ I/In —vI ——y for In —vI -~; i.e. , u„, is ex-
ponentiall. y local. ized around the vth site with in-
verse localization length y given by Eq. (8). As
an il.lustration, we compare in Fig. 1 numerical
solutions of Eq. (1) for various values of the hop-
ping matrix element with a pure exponential de-
cay with exponent y. The agreement is excellent.
Notice that this value of y is the same as the one
obtained for the Lloyd" model of disorder for
which the T 's are independent random variables
with the Cauchy distribution, i.e. , P(T) = 1/vr(1
+T'). It can be shown from the eigenvalue equa-
tion that the density of states per site is p(e)
= (2v) '

& V,/&c. Not surprisingly this expression
turns out to be identical. to the average density of
states of the Lloyd model. These two facts sup-
port the intuitive notion that incommensurate and
random potentials may produce similar physical
effects. That a discontinuous incommensurate
potential may localize all the states was suggest-
ed in Ref. 3 on the basis of heuristic arguments.

If w/2m is very close to a rational number p/q,
i.e. , d(q) &e &' for but one q (with, say, yq»1),
then it can be shown that the wave function con-
sists of exponentially localized pieces of size y

'
which almost repeat themselves at intervals of q
for about exp(-yq)/d(q) times. Thus, as 7 ap-
proaches a rational multiple of 271, the wave func-
tions become more and more extended. The total
measure M(L) of the set of values of ~ giving lo-
calization lengths L &y ' is small, however, with
M(L) &[(e& —1)L] '. We turn now to the case of
rational w/2~ =p/q with integral and relatively

20 I J I I
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I I I I
I
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prime p and q. We give here only an outl. ine, re-
serving the details for future publication. We
were able to show that a solution of fixed quasi-
energy is nonvanishing only at exactly q points in
[-~,m], i.e.,

u. ,'(u) = Q a.'(~)~ (~+ mT -a), (10)

where the amplitudes A (e) satisfy certain re-
cursion relations. These solutions are labeled
by an integral index A. = 0, 1,2, . . . ,q —1 and a con-
tinuous parameter a confined to the interval [-m/
q, ~/q]. In terms of these quantum numbers the
quasienergies are, up to multipl. es of 2m,

~ ~(a) = V,(e ) + 2 Q V„(~) cos(rq a) + X~. (11)
y =1

For fixed e the quasienergies fall into q bands
with uniform separation 2m/q, and width propor-
tional to exp(- yq), if q is large. Alternatively,
for fixed &u, Eq. (11) gives the eigenvalues of the
tight-binding problem which also form continu-
ous bands, in sharp contrast with the irrational
case. The wave functions in Eq. (10) are local-
ized but nonnormalizable in k space. They are ex-
tended and nonnormalizable in real space. When
~/2w approaches an irrational number (p, q —~
with p/q finite), however, the bandwidth vanishes
exponentially, i.e. , faster than the separation be-
tween bands, and then, one recovers the discrete
(but dense) spectrum of the irrational case. It
can be shown that in this limit all the solutions of
type (10) with a fixed X become degenerate. We
have explicitly checked that by forming appropri-
ate linear combinations one recovers the local-
ized solutions of Eqs. (5) and (6).

So far we have presented results for the near-
est-neighbor model. . However, more general. po-
tentials can be treated in the same way. For ex-
ample if U(k) = v cosh+a the corresponding hop-
ping W„becomes complicated (although still ap-
proximately nearest neighbor for small. K). For
this case the dynamical problem is particularly
simple since the only nonvanishing V„'s are ~,
and V, . For this potential and irrational v/2w the
eigenfunctions of Eq. (1) can be given in closed
form:

-60
IO 15 20 25 30

u„„=cos[(n —v)~/2]&~„,
~

(K/2 sin(-', ~)), (12)

FIG. 1. The wave function u„(full circles) for 7-

= 4.867, ~ = 0, e = 0, and (curve a) ~ = 0.005, (curve b)
~ = 0.25, and (curve c) ff = 0.95. The straight lines are
the corresponding envelopes-as calculated from Eq. (8).

where J„(x) is a Bessel function. For large r it
falls off faster than exponentially. For rational
w/2m, there are again bands, but of precisely
zero width, i.e. , there are only q different ener-
gies, each of which is infinitely degenerate.
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In summary, we have solved exactly a class of
one-dimensional tight-binding models with a
diagonal potential that can be incommensurate
with the underlying lattice. We found that in the
incommensurate case and for nearest-neighbor
hopping, all the states are localized with the
same l.ocalization length as that of a related dis-
ordered system for most values of the param-
eters, and the density of states coincides with
that of the disordered system. Thus, all the
physical properties that depend on the density of
states are identical for both systems. It will be
of interest to investigate in what aspects this
similarity between disordered and incommensur-
ate systems manifests itself for other incom-
mensurate potentials. The explicit solutions ob-
tained should also be useful for the calculation of
observables, such as transport coefficients, in
our model.

This work was supported in part by National
Science Foundation Grants No. DMR 79001172-
A02 and No. DMR 7908819 and by the Center for
Theoretical Physics. We also acknowledge the
support of the Computer Center of the University
of Maryland.

'L. L. Chang and L. Esaki, Prog. Cryst. Growth 2,
3 (1979); J. A. Wilson, F. J. DiSalvo, and S. Mahajan,
Adv. Phys. 24, 117 (1975); C. K. Chiang, R. Spal,

A. Denenstein, A. J. Heeger, N. D. Miro, and A. Q.
MacDiarmid, Solid State Commun. 22, 293 (1977);
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

~P. W. Anderson, Phys. Rev. 109, 1492 (1958); for a
review, see, e.g. , D. J. Thouless, in Ill-Condensed
Matter, Proceeding of Les Houches Summe~ School,
edited by R. Balian, R. Maynard, and G. Toulouse
(North-Holland, Amsterdam, 1979).

~S. Aubry and C. Andre, in Proceedings of the Israel
Physical Society, edited by C. G. Kuper (Hilger, Bris-
tol 1979) Vol. 3 p. 133.

4M. Ya. Azbel, Phys. Rev. Lett. 43, 1954 (1979);
J. B. Sokoloff, Phys. Rev. B 23, 6422 (1981); C. M.
Soukolis and E. ¹ Economou, Phys. Rev. Lett. 48,
1043 (1982); J. B. Sokoloff and Jorge V. Jose, Phys.
Rev. Lett. 49, 334 (1982); J. Bellisard, A. Formoso,
R. Lima, and D. Testard, Phys. Rev. B, to be pub-
lished.

'S. Fishman, D. R. Grempel, and R. E. Prange,
Phys. Rev. Lett. 49, 509 (1982).

Q. Casati, B. V. Chirikov, F. M. Izraelev, and
J. Ford, in Stochastic Behavior in Classical and Quan-
tum IIamiltonian Systems, edited by G. Casati and
J. Ford, Lecture Notes in Physics Vol. 93 (Springer,
Berlin, 1979); B. V. Chirikov, F. M. Izrailev, and
D. L. Shepelyanskii, to be published; F. M. Izrailev
and D. L. Shepelyanskii, Teor. Mat. Fiz. 43, 553
(1980) [Theor. Math. Phys. 43, 417 (1980)].

7P. Lloyd, J. Phys. C 2, 1717 (1969).
~D. J. Thouless, J. Phys. C 5, 77 (1972); K. Ishii,

Prog. Theor. Phys. , Suppl. 53, 77 (1973).
~For a review see, e.g. , B. V. Chirikov, Phys. Rep.

52, 263 (1979).

836


