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A three-body problem, concerning two holes in a nondegenerate valence band and a single
electron in a conduction band, with strong short-range interactions, is solved exactly in any
number of dimensions. The binding depends nontrivially on the ratio of the valence to con-
duction bandwidths (i.e., on the inverse ratio of their effective masses) and always vanishes
when this ratio exceeds 1. The effective mass of the “trion” bound state also depends sen-

sitively on this ratio and on dimensionality.

PACS numbers: 71.35.+z

There exist so few exactly solvable three-body
problems in quantum mechanics that the extreme-
ly simplified model we have recently solved may
be of general interest in the physics community.
It consists of a very tightly bound exciton inter-
acting with one extra hole, on a lattice in any
number d of dimensions. Generalizations to the
four-, five-,... body problems also seem pos-
sible in some instances.

The special role of excitons in solid state and
in the optical properties of matter has been rec-
ognized in an extensive literature. Recent re-
views by Rice! and Hensel, Phillips, and Thomas?
deal with the Wannier exciton (the “large” exci-
ton, consisting of a bound electron-hole pair)
suitable for a number of semiconductors, where-
as the Frenkel exciton (the “small” exciton, lo-
calized within an atomic distance or so) is more
appropriate in other semiconductors and in or-
ganic materials. The distinction is drawn in
Knox’s text.® In the present model, a param-
eter U enables us to proceed continuously from
the one to the other; the three-body problem is
explicitly solvable, however, only in the Frenkel
limit U =w. It was Lampert who was probably the
first to extend the concept of an excitonic bound
state to more than two particles, which he de-
noted “effective-mass particle complexes.”® De-
spite the approximate nature of the effective-
mass approximation (EMA) (which limits it to
binding energies small compared with band gaps,
bandwidths, etc.), and its equivalence to the con-
tinuum limit of the lattice (which limits it to
length scales large compared with an atomic
distance), it maps onto ordinary molecular phys-
ics of few-body systems and has allowed inter-
esting results to be obtained on the existence of
bound states for the exciton plus hole,® the exci-
ton plus electron®'” and higher complexes.! The
exciton plus hole (or electron) was given the

name “trion” by Thomas and Rice® in 1977, and
shortly thereafter experimental evidence for this
complex was produced, e.g., in the work of Stébé
et al.® Related theories exist in other fields of
physics, concerning the existence of positronium
molecular ions (2¢*,e”),'> ! the negative hydro-
gen ion'?" 1 found by Hill'*'** to have but a single
bound state, and the lack of a positron-hydrogen
bound state'® for an infinitely massive proton as
well as for a proton of the usual mass.'® But
when the EMA breaks down, as it does in our
solvable limit, these theories are clearly of
limited use.

We start with the two-band Hubbard model first
discussed by Anderson,'” and applied by Falicov
and Kimball,'® Ramirez, Falicov, and Kimball,®
and Doniach, Roulet, and Fisher® to the study of
excitons. Egri?' 22 subsequently used the same
model in one dimension (1D) to unify the picture
of Wannier versus Frenkel excitons; in this work
he included an exciton-hopping matrix element,
which is a two-center, four-orbital Coulomb in-
tegral. In the present Letter, we shall neglect
this matrix element, and thus our Frenkel exci-
tons are immobile in the U =« limit, as we shall
see. We also neglect the spin of the particles.

In this way, we achieve a solvable model not
limited to 1D. The model Hamiltonian is

H=H_.+H,+H, +Hgy, (1)
where

He==C2lci*cy.s, (1a)

H,=VYv*v,.;, (1b)

Hy, =U2 v, v, ¢ *c, (1e)

Hy=3BY (c;*c; =v;*v;), (1d)

in which ¢, ¢+ 0 are nearest-neighbor sites, C
and V are the conduction- and valence-bandwidth
parameters [in EMA, the conduction-band effec-
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tive mass is m,*=(2Ca®) "' and the valence-band
hole effective mass is m,*=(2Va?) ™! in units
where Z=1 and a is the lattice parameter], U is
the electronic repulsion parameter that we shall
take to the limit U=«, and B is related to the en-
ergy gap as follows: E g, =B -z(C +V), with 2z
the coordination number of the lattice (z=2d for
a d-dimensional simple cubic).

If, as we shall assume, B is sufficiently large,
the valence band is fully occupied with (spinless)
electrons (anticommuting creation and destruc-
tion operators v;* and »;) and the conduction band
(c;* and c;) is empty in the ground state. Start-
ing from this, we introduce n electrons into the
conduction band and p holes into the valence band
(creation and destruction operators v; and v ;*
for the holes), setting n=1 and p =2 for the prob-
lem of current interest.

In the limit of U =«, an electron in the conduc-
tion band must be on the same site as a hole in
the valence band; this is also known as the Frenk-
el limit. In the absence of explicit exciton hop-
ping matrix elements discussed above, the Frenk-
el exciton is immobile, as proved in Fig. 1. Two
or more excitons cannot occupy the same site,
although they can be neighbors without incurring
any interactions. Therefore, the many-exciton
states are trivial in the present model. The in-
troduction of a single extra hole changes the situ-
ation dramatically. Even when the exciton is im-
mobile, the bound #7ion can acquire a finite
mobility related to the connectivity of the lattice.
Although in 1D the trion remains immobile, in
2D or 3D we shall see that it acquires an effec-
tive mass which depends on the ratio V/C. In
fact, the very existence of the trion bound state
depends on this ratio, which we shall denote
|V/C|=v for convenience. In 1D and 2D there is
a bound state whenever v <1, whereas in 3D v
<% is required (amounting to m,*/m,*s<% in the
EMA). We shall give the explanation following
Eq. (12). In any event, such a dependence on di-
mensionality and band structure has not been J
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FIG. 1. Illustrating the immobility of the exciton
[configurations such as (a) and (b) are prohibited when
U =] and the motion of the trion in two or higher di-
mensions under the same rules. An electron in the

conduction band is indicated by a cross, and a hole by
a circle.

noted in the literature heretofore, and lies out-
side the realm of the EMA. Nor has it been noted
that a hole can even bind two excitons—a five-
body problem that we have explicitly solved in 1D
and which is capable of being solved in 2D or
higher, as we show in the expanded version of
the present paper.2®

We introduce the vector distance T between the
extra hole and the exciton, and the wave functions

F,(;) and Fz(;) to distinguish when the electron is

on top of hole 1 or 2. Later, we ensure that the
wave function is antisymmetric under the ex-
change of the two holes, to satisfy the Pauli prin-
ciple. We find the Schrdodinger equation for F(7):

2n(=8)0r5 +UF, ,(F)op5 =EF, ,(¥), (2)

where E is the ground-state energy, and E = Etrlon -E, - 2B is the energy eigenvalue. Uis a projection
operator, not to be confused with U. Taking the U~ 11m1t causes the unphys1cal amplitude F, ,(0) to

vanish. The lowest (bonding) bound state is always given by Fl(r) +F2(r) F(1).

The antibonding case

F,(r)=-F,(r) produces a second set of bound states which can, however, be related to the former at
the same value of total momentum K by taking C — — C in the various formulas.
By using a straightforward Green’s-function method, we reduce Eq. (2) to a set of 2d + 1 equations:

~[06(0,0)+1]F(0)+C Y 5 G(0,- 8 )F(3’)=0,
~UGE,0F(0)+C Y5 GE,-8)F(@)-F(&)=0,

(3a)
(3b)
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with & taking on any of the 2D nearest-neighbor
values. While F(0)=0 in the U - « limit, the
product UF (0) is finite and must be retained.

The Green’s functions which appear in (3) are the
familiar lattice functions of a cubic lattice:

G@E, )=t [arg explig- (r-17)]

ez(@-E
with
€z (@ ==V 5 cos[3(K+q)-3].

Equations (3) must be solved numerically in gen-
eral, although along the axis of high symmetry K

=K(1,1,...) they simplify considerably:
f(E)+g(E)=0 (for d=1 only), (4)
or
f(E)cosK +g(E)=0 (d > 2), (5)

where f(E) and g(E) are simple combinations of
the G’s,

ch):l[ iGo=Go)+ 37z (1+Eco>} ©)

£(B)= 5773 (Go=GM1+EG )+ 25 )
with

G,=G,(E)

=(271)"‘fd"qd"i} cosmq;/le,(@)-E] (8)

for m=0,2.

Depending on v, Egs. (4) and (5) may yield
bound states for the various K in the Brillouin
zone. We investigate three points of high sym-
metry.

(1) K=0.—AtK =0, (4) and (5) factor:
[GO—G2+%][G N chvz (1+EGO)]=0. 9)

Because the first factor is nonzero for C >0, we
can divide it out to obtain

1
GolE)+ 5 +2dVZ/C

with G, given in (8). There is a bound state below
the continuum (that is, there is a solution E
<=2dV) only if

v=|V/C|<v,,

=0, (10)

(11)

where the critical v, is obtained by setting E at
the threshold value — 24V in (10). G (-2dV) is re-
lated to Watson’s integral®* W, , and in fact (10)

810

yields

v, =1=-1/W,, (12)

where

d
W, = (2Tr)"’fd"q(1 —d~' )] cosq;)t
i=1

is infinite for d=1,2 and finite ford>3. W,

=1.516..., and W, monotonically decreases to
W,~1asd-=. As a consequence, v, -0 as d
— 00,

These results can be understood qualitatively
by analogy with ordinary potential wells in con-
tinuum quantum mechanics. In binding the extra
hole, the electron lowers its motional energy
by O(C), at a cost O(V) required to localize the
hole. Thus the potential well is attractive only if
V <C. While an arbitrarily weak potential well
binds in 1D, and 2D is marginal, in 3D or higher
the well must become deeper with increasing d if
a bound state is to be retained; hence v, must de-
crease to 0 as d~«. [Note that the range of the
forces is a constant O (@) for alld.]

Regrettably there is no trion bound state in 1D
for V=C. In that limit, our model reduces to the
Hubbard model solved by means of a Bethe’s
Ansatz by Lieb and Wu,®® and although we are
able to obtain solutions for arbitrary values of
n and p, none of them can be bound states! None-
theless, for v <1 we have solved some cases of
small # and p and found the bound states. [The
interesting case of n=2, p =3 (an extra hole bind-
ing two excitons) is reported elsewhere.23]

(2) K =3m.—At midzone, (5) yields

5753 €= G )1+ EG, )+ =0, (13)
E(K) (a) E(K) (b)
+4V
-4V
o 7 7" o A

FIG. 2. Bound states of the trion and their dispersion
in 2D. Energy is relative to that of an exciton; contin-
uum is that of a free hole. (a) Narrow valence band-
width |v/C|=v<y,’, with + labeling bonding and —
antibonding branches. (b) v.’<v<1l. The momentum
K is along the [1,1] direction.
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FIG. 3. Qualitative dependence of inverse trion ef-
fective mass 1/m* at K= 0 as a function of v in 2D, 3D,
and 4D (solid curve) and d = 5 (dashed curve). In 1D,
where E is independent of K, 1/m* is always zero.

This has a bound state for v<v,’, with the new
threshold v’ (smaller than v,) given by

v, =[d's,(1=1/W,)]/2

with S, a variant of Watson’s integral,

(14)

S, =(2n)"‘fd"q(d“i) sinij)/(l—d'ljd? cosq; ).

i=1

(15)

(3) K =n.—Equation (5) again factors as did (9),
with C replaced by —C. The second factor is now
nonzero, but the first factor can vanish, yielding
the bound-state energy. The threshold is

v,''=d"'S,
and is, in turn, smaller than v ’.

The dispersion (variation of E with K) is shown
in Fig. 2 for all the bound states in 2D at two dif-
ferent values of v. Expanding E (K)=E (0) +K2/
2m*+ ... we can define m*.

The effective mass m* of the trion is calculable
at K =0 from a simple formula,

* = 1 4
m _}TE_ja_E_[f(E)+g(E)]K=°'

(16)

17

When the numerator and denominator both diverge,
the ratio must be taken carefully. The result is
plotted in Fig. 3. The derivation, and further re-
sults, will be justified at length in a later publica-
tion.2?
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