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the velocity of crystallization recovers, and layer-
ing is reestablished [see Fig. 2(d) at 333 psecJ.
At the end of the process (- 500 psec) the total
number density profile is identical to that in Fig.
1(a), and the impurity profile is shown in Fig.
1(d)(f). A certain amount of impurity segrega-
tion to the free surface is evident.

In this study we demonstrated the use of MD in
an investigation of a complex nonequilibrium ma-
terial process. Of interest is the "liquid layering"
which, as we observed, precedes the solidifica-
tion front, preparing the liquid for formation of
perfect crystalline planes, and significantly af-
fects impurity segregation and transport (see
also Wood, Ref. 3), while in turn being affected
by interfacial conditions that it, in part, brings
about. MD studies can be instrumental in ana-
lyzing the dynamic interrelationship between the
structure and properties of the interface and the
solidification process. Investigations continue
in our laboratory on the relationship between the
time scale of interface processes (such as layer-
ing) and the nature of the resulting solid (crystal-
line versus amorphous) under various solidifica. -
tion rates, the effect of crystal face, crystalliza-
tion on amorphous substrates, the role of "liquid
layering" in solute trapping or expulsion, and

the dependence on host and impurity interaction

potentials and mass ratios.
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Commensurate adsorbed surface phases, particularly p x 1 rectangular and ~3 x ~3 hex-
agonal phases, exhibit two (or more) classes of domain wall, reflecting a lower than ideal
symmetry; these compete statistically and undergo wetting transitions. Scaling arguments
and model calculations indicate that new types of continuous melting transitions, possibly
already seen in Kr on graphite, can thereby arise.

PACS numbers: 68.40.+e, 05.70.Fh, 64.70.Dv, 75.10.Hk

Many (d =2)-dimensional systems are now

known in which an adsorbed, commensurate sur-
face phase, with the adsorbate atoms or mole-
eules in ordered registry with the substrate solid,
melts under variation of the temperature, T, or
chemical potential, f (controlled by the vapor
pressure) Such mel. ting may be discontinuous
(i.e. , first order) in nature but theory suggests, '
and experiments confirm, "that continuous tran-
sitions may also occur. We focus here on such

continuous d =2 commensurate melting and ask
"What types of transition may occur~" We argue
that a class of asymmetric or chiral transitions—distinct from the previously identif ied sym-
metric Ising, Potts, and P-state clock universali-
ty classes —should arise in real systems and
may already have been seen in studies of krypton
on graphite. ' The existence of different types of
domain ua/ls plays a significant role in the phe-
nomena.
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Our analysis addresses systems where, in the
commensurate phase, one of p =2, 3, . .. distinct
sublattices, A, &, C, . .., Df substrate adsorp-
tion "sites" is preferentially occupied while, in
the melted phase, the sublattices are no longer
physically distinguished. The sublattices display
an abstract "internal" or "global" symmetry, say
Y~, which permutes them. In particular, we con-
sider p&& 1 rectangular phases, in which an ad-
sorbate on a rectangular substrate has an x-axis
lattice constant P times the corresponding sub-
strate lattice constant, and p =3 hexagonal phases
on hexagonal substrates, such as the ~3&&~3

phase of He or Kr on graphite. ' 4

Since the commensurate ordered phases display
the internal, global symmetry, F~, it is not un-
natural to expect that the corresponding melting
transitions should be in the universality classes
represented by the Ising (P =2), Potts (P - 3), or
symmetric clock (p- 3) models" which exhibit
matching symmetry. These models can be real-
ized with "spin" variables n; =0, 1, . . ., (p —1) at
sites i,j, . . . of some lattice and nearest-neighbor
"ferromagnetic" couplings: The clock form
—&cos[2~(n, -~,)/p], which favors pairs 00, 11, . ..
equally over 01,10,12,21, etc. , is general for
p =2 or 3. On this basis one thus predicts con-
tinuous melting for P =3 systems; further, the
specific heat should diverge with the Potts expo-
nent & =~, a conclusion apparently confirmed,
for a least one coverage, in studies of He on

graphite. '
Now the full symmetry of these simple p-state

models on a given lattice is the direct product of
the internal symmetry, F~, and the independent
lattice symmetry, say I-. Some inspection re-
veals, however, that this model symmetry does
not in general match the real physical symmetry,
say G, which is, at best, a subgroup of K~&1..
This can be seen in a physically informative way
by considering an ideal, single-domain sample
and examining the heterodomain fluctuations
which, ultimately, are responsible for its melt-
ing. Figure 1 illustrates, for P =3, some such
fluctuations, first, topologically and, below, as
microscopic subdomains of an adsorbate (shown
schematically with neglect of small displacements
around the adsorption sites which do not affect
the disordering directly' ). In the standard three-
state Potts/clock model the subdomain free ener-
gy is IZ, (T), where I is the total length of domain
wall and Z, (T) is the wall tension: this is the
same between any pair of domains. But micro-
scopically, as evident from Fig. 1, for both rec-
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FIQ. 1. Heterodomain fluctuations in p = 3 rectangu-
lar and hexagonal commensurate phases illustratir@,
in the lower part of the figure, the occurence of
"heavy" (single line) and "light" (double line) domain
walls. The labels A, B, and C correspond, in the up-
per part, to occupation of one of the three equivalent
sublattices illustrated in the lower part.

tangular and hexagonal phases there are (at least)
two. configurationally distinct types of wall, say
"heavy" and 'light. " [Topologically, there are
(p —1) types of wall. ] Furthermore, because of
the asymmetric, repulsive-versus-attractive na-
ture of interactions between real atoms, differ-
ent walls will, in general, have different tensions,
say &,(T, f) and & (T, &). In particular, heavy
walls will, normally, be favored (i.e., &+ && )
by an "overpressure, "while an "underpressure"
favors light walls; for some chemical potential,
say f,(T), one should find Z, =Z

It follows that subdomains which differ on1y in
their lattice orientation can have quite different
free energies (see Fig. 1). Thus in a rectangular
phase, a domain sequence A I B I C I A, with walls
predominantly parallel to the y axis, will be dis-
tinguished from the mirror sequence A I CI BIA.'
Likewise in a hexagonal phase the heavy wall
junction (4. ,B,C) has a different free energy from
(A, C,B). These examples demonstrate the
"chiral" character of the heterodomain fluctua-
tions in real adsorbed phases and establish that
appropriate model Hamiltonians should embody
a symmetry lower than ~~&I .'

The presence of a lowered symmetry suggests
transitions of a new, chiral character: But "Does
the breaking of the full K~&I- symmetry in real
systems represent a relevant perturbation of
pure Potts or clock criticality~" If the symmetry
breaking is relevant, pure Potts behavior should
appear, ' e.g. , as in Fig. 2(a), only at an isolated
multicritical point, P (where L =0,), lying on a
chiral transition line whose chirality switches at
P.' Conversely, if the perturbation is irrelevant,
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FIG. 2. Schematic phase diagrams for the melting of
a commensurate p = 3 surface phase (C) when the chiral
perturbation is (a) relevant and (b) A rezevant. Bold
lines denote (possible) first-order transitions; thin
lines, continuous transitions; dotted lines, domain wall
wetting; IC indicates an incommensurate solid phase
(Ref. 4); 73 denotes a tricritical point; P a multicrit-
ical point of three-state Potts character; and M a (pos-
sible) new multicritical point.

Potts-like behavior should be maintained along
the critical line, at least for a range of g near f,.
Nevertheless, as in Fig. 2(b), a tricritical point,
T„and first-order segment may appear and,
possibly, also a new multicritical point, M, and
a subsequent chiral transition region. ' We be-
lieve that phase diagrams like Fig. 2 can be real-
ized in physical systems. To distinguish the pos-
sibilities we present, first, a scaling argument,
applicable to the disordered, melted phase, which
suggests that chiral melting may already have
been seen in Kr on graphite'; second, we discuss
calculations for a uniaxial chill Potts or asyrn-
metxic p =3 clock model 5' which indicate an iso-
lated Potts multicritical point and a new chiral
transition.

Consider the structure factor, S (q; T, f), in the
disordered phase for wave vectors q =6+xLq,
where 6 locates a Bragg peak of the commensu-
rate adsorbate. Let t(T, &) &0 be a smooth func-
tion vanishing linearly on the commensurate melt-
ing line. Now S(q) displays a maximum at an in-
commensurability &q =q(T, t) which is, in gener-
al, nonzero but which vanishes, say, as t when
the commensurate phase is approached. The
peak width, ~„(T,f), standardized say at "half
height, " measures the inverse correlation length
and so vanishes as t'/a. Asymptotically, as t-0,
scaling asserts S(q)=t rD(b, qa/t') with D(m) a
universal function. Now for pure Potts universali-
ty'we expect D(w) to attain its maximum at u =0,
which in turn implies p & v and q/~„- 0. This con-
clusion is supported by exact calculations" for the
hard hexagon model —thought to be Potts-like

—which yield P =~ and v =&'. The incommensura-
bility, q, thus appears only as a correction to
scaling. On the other hand, the prefreezing, cri-
tical fluctuations at a chiral transition should re-
flect the preference for, say, heavy domain walls
in an intrinsic scaling manner. These walls re-
semble ordinary discommensurations' and there-
by force a nonzero q corresponding to D(~) being
maximal at sg =so, g0. Thus in the disordered
phase a chiral transition should be signaled by
the ratio q/~„approachinga universal nonzero
limit (which also implies iY=v). The experiments
of Monctonetal. ' on the "fluid" phase of Kr on
graphite at T = 97 K find that this ratio approaches
u, =1.0+ 0.4 at the boundary of the ~3&&~3 phase.
Further experiments could check the universality
of the ratio and decide if the phase diagram re-
sembles, say, Fig. 2(b) (see below).

Note that the usual T 0 T, symmetry implies the
equality of v', the correlation length exponent in
the commensurate phase, and v. At a continuous
commensurate-incommensurate transition q and
P are well defined in the incommensurate, floating
solid '" although &„and v are not; but scaling im-
plies P =v', generally.

The symmetric f -state coupling quoted above is
generalized in the uniaxial chiral (or asymmetric)
clock models" to -&cos[2&(n; n, +& -R,&)/p],
where R;, is a nearest-neighbor vector. Then for
a small chiral field, ~ =x&, like pairs, 00, 11,...,
are still preferred to unlike pairs but, along the
x axis, the +pairs, 01,12, . . ., are favored over
the —pairs, 10,21, . . ., when & & 0; likewise, as
has been confirmed by low-temperature expan-
sions, there are two distinct mall tensions, which
satisfy ~, & ~ for»0. On a square lattice
these models can thus reasonably describe p &&1

adsorbates with & corresponding to f —f, 'Now.
~ is relevant if and only if the corresponding
crossover exponent, P~, is positive. " Scaling
arguments supplemented by a plausible assump-
tion" identify the exponent for the field-theoretic
chiral term, ld'~PUP, as Q~=p~ —2P~, where P~
is the standard, pure symmetric order parame-
ter exponent, while p~ describes the wall tension
via ~, -t"~. This result checks in mean field
theory, which should be valid for d -4, where it
yields Q~ =&(p —2) when p & 4. (For p =3 mean
field theory predicts a first-order transition. )
For P =4, where the model decomposes into two
disjoint Ising models when & =0, an exact analy-
sis" agrees for alld, giving $, =1, -', , 0.61, and

~ for 2 =1 to 4. In the limit d - 1 the Migdal-
Kadanoff (MK) approximate renormalization group,
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which should then be exact, confirms p~ =1 for
all p & 2. For p =3 we have. rio further exact re-
sults, but for a Berker or fractal lattice, where
the MK method is again exact, one obtains' P,
= ~ when d, ~~ =2. Finally, the scaling relation
with accepted Potts exponent values yields P~
= ~8

= 0.61 for d =2 which, even if not exact, is
probably a good estimate. Thus we conclude that
a chiral term is always relevant in the uniaxial
models. Hence the symmetric point, I', should
be multicritical, as in Fig. 2(a), for all P &&1

phases (P &'2) and the phase boundaries T, (t;)
near P should have a contribution varying as (f

)1/4p

Even granted chiral crossover from symmetric,
Potts behavior, it is not obvious that the resulting
transition has an intrinsically new character.
(Thus in a two-layer Ising model Ising-to-Ising
crossover occurs when the layers are coupled. ")
To address this, consider, for P =3, the hetero-
domain fluctuations in the chiral regime and note,
first, that the tension, Z, (T, L), of a favored, +,
domain wall must vanish on the melting line.
Conversely the unfavored tension, Z (T, 0), ought
to approach zero on1y beyond the transition. How-
ever, when &+ falls to ~Z a &vetting A ansition
must occur after which any wall, say & II C, low-
ers its free energy by decomposing into two +
walls and forming anal &I ~ structure by inser-
tion of a J3 domain. In the chiral clock model at
T =0 this wetting transition occurs at & = ~, well
inside the commensurate phase (which extends to
4 =z); for T &0 it can be studied by series ex-
pansions, etc. In a "solid-on-solid" limit we find
that the wetting transition is continuous with (Z
—2&, ) - (T —T„)'. Generally, the wetting line,
T g), should resemble the dotted curves in Fig.
2. It follows that the long boundaries of large
heterodomain fluctuations should, near chiral
melting, all be of the + type. For a given length,
the boundaries of the most probable subdomains
in the neutral limit, t; =t;„ form simple loops
[e.g. (i) in Fig. 1]; but for L &4, these entail un-
favored wall segments and hence, in the wetting
region, must decompose into two-loop form
[e.g. , (ii) in Fig. 1] of lower entropy. Similarly,
all two-loop subdomains [ e.g. , (ii) and (iii)] con-
tribute equally when f =&0, but half are suppressed
and half are enhanced when &&f,. In short, the
nature of the dominant fluctuations driving melt-
ing changes so drastically in the chiral regime
that it seems unlikely that the symmetric melting

exponents are preserved. Similar considerations
apply for p ~ 3 and for hexagonal chiral melting.

In summary, we have argued that the behavior
of domain walls yields new types of commensu-
rate melting transitions which may be observable
in surface phases. Further experiments are de-
sirable, especially on 3 &1 rectangular phases"
where the predicted features should show most
clearly.
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