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Percolation theory is extended to the case of circuit elements with nonlinear I-'V char-
acteristics, particularly the special cases V =I r, which form the universality classes.
Near the percolation threshold the "conductance" I/V /~ vanishes like (p -p ), where t
depends on e and dimensionality. The Skal-Shklovskii-De Gennes model gives t(&)
= (d —1)v+ (qr —v)/c, where y is only weakly dependent on & and d, and approaches unity
at 1=6, Renormalization methods are used to study the z dependence of t in two dimen-
sions.

PACS numbers: 05.40.+ j, 84.20.Pc

A network built of randomly chosen conducting
and nonconducting elements has a conductivity
which vanishes as the percolation threshold is
approached. ' The behavior near threshold is de-
scribed by a universal power law; the dimension-
ality dependence of the exponent has been given
extensive study. ' 4

The problem can be generalized: Determine
the relationship between average current density
and average field in a network of randomly chosen
nonlinear elements. The generalization brings
with it two complications that prevent direct trans-
cription of previous theory: (1) The superposi-
tion principle no Longer applies. This rules out
a number of short cuts; in particular, effective
medium theory is no longer the simplest approach
to the problem. (2) The I-V characteristic of a
combination of elements may be different in func-
tional form from that of the components. For
example, consider a combination of identical
circuit elements having two in series and a third
connected parallel to these: If the individual ele-
ments have a singular point in their I-V charac-
teristic at voltage V„ the combination wiLL have
two singular points at V, and 2Vp. Thus part of

the problem is to determine the unknown function-
al form of the I-V characteristic of the network.

In view of the argument just given we can antic-
ipate that in the limit of an infinite system the
functional form will be smooth (except possibly
at V= 0): H we build a l.arge system by joining
a few components into a module, joining modules
into larger arrays, and so on, the number of
singularities proliferates while their individual
signif icance decreases.

The I-V characteristic of a network that is only
slightly inhomogeneous will strongly resemble
the average I-V characteristic of its component
elements, but with the corners rounded off. In-
creasingly inhomogeneous networks will also
have increasingly smooth I-V characteristics.
As the percolation threshold is approached, we
might anticipate the emergence of a class of
"universal" I-V characteristics. Since the net-
work at the percolation threshold is inhomogene-
ous at aLL length scales, we can see that a neces-
sary feature of the asymptotic form is that a
random network built of elements with this I-V
characteristic must itself have the universal I-V
curve.
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The observation which we now put forward is
that circuit el.ements which have a power-law re-lationshipp

V =r
l Il sgnl

do preserve the functional form when combined.
Consider an arbitrary two-terminal network built
of such elements, all obeying the same power
law (the coefficients r may be chosen arbitrarily,
however) and subjected to an arbitrary applied
vol. tage V„, . The resulting voltage and current
distribution is determined by Kirchhoff's rules
with Ohm's law replaced by Etl. (I). Now if all
voltage differences, including the external. volt-
age, are increased by a factor x and all. currents
increased by a factor x', a new solution to
Kirchhoff's rules is generated. The current from
the voltage source is thus proportional to V,„,' ",
al.lowing us to generalize the concepts of con-
ductance and resistance,

g ~ 1/+ g VI cx (2)

Similarly, a uniform field in a homogeneous non-
linear medium of this type will give rise to a
uniform current density, related by a conductivity
gg - 1/0'.

In view of the discussion above, this result
shows that the power-law conductors for any
given n form a universality cl.ass of the nonlinear
conductivity problem.

This argument cannot be extended to three-
terminal networks, because the equivalence be-
tween F-shaped and triangular networks that ob-
tains for linear networks fails to generalize. '

Two special cases can be included as l.imiting
cases of the class: bipolar Zener diodes (which
do not conduct below V,) are the case t). - 0, and
according to Etl. (2) the "resistance" of the device
is V» saturating conductors (which will not carry
a current higher than I, ) are approximately the
case n-~, and the "conductance" of the device
is I, . The properties of a random network of
saturable conductors has been discussed previ-
ously. ' '

The behavior of circuit elements with more
general" I-V characteristics can be discussed
in terms of the power-law conductors. For ex-
ample, one might encounter a circuit el.ement
described by one power law for small applied
voltage, and a different power law for large volt-
age:

lc(V/V, )'l") sgnV for
l Vl &V„

I
lc(V/V )'l"2sgnV for lVl & V, .

It is useful to visualize the function plotted as
lnl vs lnV: two straight lines of differing slopes.
For sufficiently small applied fields, the behav-
ior of a randomly dilute network of these elements
will be determined by n„

I =c(p -p, )'&(V/V, )' ", (4)

whereas the large-field behavior is determined
by a»

I = c(p -p, )'2(V/Vo)'

On the logarithmic graph the two straight lines
have been shifted down by differing amounts. The
crossover voltage can be estimated by equating
the two expressions

V = V (p -p )~t"2&t
&

t 2) ("& ~2) (6)

This analysis, generalized to I-V characteristics
which are arbitrary piecewise combinations of
power laws, suggests that as p approaches p, any
given range of V becomes dominated by the power
l.aw with the largest t(a) among those originally
represented. In this sense the power laws and
their exponents are all we need to know.

This same example, however, shows that the
asymptotic high- and low-field behavior does not
change, which raises the question: What happens
in between? In the simplest case (assumed
above), there is a singl. e crossover In the . limit
p -p, , where only the cooperative aspects of the
percolation problem are relevant, the behavior
of the macroscopic system near V, is given by a
crossover function; analogy with other coopera-
tive phenomena involving crossover suggests that
this is a universal function depending only on
dimensionality and the power laws that describe
the asymptotes: The microscopic crossover be-
havior is irrel. evant and renormal. izes away.
Multipl. e crossovers can also occur, but are in-
dependent of each other and thus lead to nothing
new.

The study of the conductivity of a random net-
work of power-law conductors near the percola-
tion threshold has been carried out by generaliza-
tion of methods previously employed for linear
networks. The principal results are as fol.lows
(detail. s will be publ, ished elsewhere):

(A) Skal. and Shklovskii" and De Gennes" have
given a useful model for a network near the per-
colation threshold: chains of resistance & —(p
-p, ) ~ which join at nodes separated by a dis-
tance $ - (p -p, ) '. In an applied field E, the
voltage drop across a chain is of order &$, giving
a current (E$/Z), and current density ~= (&5/
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&)' $' '. Then near threshold the conductivity
JE ' behaves like (p -p, )' with

t = (d —1)v+ (p —v)/o.

The exponent v is determined by the geometry of
the network and is well studied. "" The exponent

p is approximately unity for all. dimensionality
and a. The special case n-~ of Eq. (7) has been
given by Deutscher and Happaport. '

(B) The result (7) is only expected to hold up to
the upper critical. dimensionality (d*=6), where
the exponents take on their high-dimensionality
values. Above d* the chains are well. modeled as
simple random walks, which implies v*=

& and
&&*=1, giving t*=-', +(2o.') '. We have succeeded
in verifying that this is the correct exponent for
the Cayley-tree model, which is an endl. essly
branching network with no closed loops and is
usually taken to be an infinite-dimensional. sys-
tem.

(C) The o. dependence of t was studied with a
renormalization method" "in two dimensions.
The results are shown in Fig. 1. The renormal. i-
zation cel.l. is shown in the inset; it is the "Wheat-
stone bridge" cell of Bernasconi, "which has the
advantage that it is self-dual. It gives p, =-, and
v=1.4277. For any given configuration of bond

OO,

conductivities we may calculate a conductance;
for example, if all bond conductivities are unity,
the cell conductance is 2' ' ". The cell conduc-
tivity is then defined to be the conductance divided
by 2' '/, so that a lattice of all unit conductors
has unit conductivity.

The conductivity exponents were calculated as
follows. Several thousand configurations were
constructed by choosing the five bonds of the cell
from a conductivity distribution P, and the set of
conductivities obtained formed a. new distribu-
tion P '. This process, which constitutes the re-
normal. ization transformation, was repeated ten
times. The average conductivity for the succes-
sive distributions decreases by a factor which
provides an estimate for t:

2 ""=(o&z /&a)~ (8)

The saturating conductor and the Zener diode
were al.so studied by this method; these results
are entered in Fig. 1 as the a- ~ limit of t(n)
and the o. -0 limit of v(o. )= o.t(o), respectively.
The resul. ts are consistent with Eq. (7) with y
only weakly dependent on o. .

Percolation effects in a few specific types of
nonlinear conducting elements have been con-
sidered before, ' ' but this is the first attempt to
treat the general problem. Potential applications—beyond the obvious examples of randomly doped
semiconductors and the ZnO varistor" —might be
the flow of nonwetting fluids through finel. y porus
material, the magnetic properties of ferromag-
netic ceramics (with II and B replacing V and I),
and random Josephson networks (where the super-
current has nonlinear dependence on phase dif-
fer ence) .

This mork was supported by the National Science
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FIG. I. e dependence of t and ~ in two dimensions,
according to a renormalization study. A nonlinear
scale is used to allow the whole range of these quanti-
ties to be seen; it was generated by a linear plot of
t/(v+t) and v/(v+v) against n/(i. +n). Inset: the re-
normalization cell used.
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