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Rigorous Formulation of High-Field Quantum Transport Applied to the Case
of Electrons Scattered by Dilute Resonant Impurities
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A rigorous procedure is devised for generating quantum transport equations in an arbi-
trarily strong uniform electric field. An analytic implementation of the procedure is pos-
sible for the case of electrons scattering off a dilute random distribution of resonant-
level impurities. In the limit of local scattering, the collision integral assumes a relax-
ation form, with a field-dependent relaxation time, thus reducing the calculation of the
current to quadrature.
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It has been a long-standing theoretical problem
to devise a scheme for calculating nonlinear
transport phenomena. " Most reported results
have been restricted to perturbation expansions
in the external fields. The Keldysh' technique is
a notable exception: the external fields are in-
cluded in the free Hamiltonian thus permitting,
at least in principle, a nonperturbative calcula-
tion. However, to our knowledge the Keldysh
formalism has not been applied in practice to
problems beyond quadratic response. '

The advent of the submicron semiconductor de-
vices (where extremely high electric fields are
commonplace) has increased the need for a formu-
lation capable of going beyond the conventional
semiclassical Boltzmann theory of transport.
Levinson' and Barker and Ferry" have reported
quantum transport equations where the collision
integral differs from the Boltzmann case in two
important aspects: (i) the driving fields are
present in the collision integral leading to the
so-called intracollisional field effect, and (ii) only
in the limit of very large times is the irreversi-
ble Boltzmann-like structure recovered. In fact,
recent calculations' of transient response indicate
that the results obtained with these equations
may differ significantly from those obtained with
the conventional Boltzmann equation.

The construction of these quantum transport
equations present serious analytical and computa-
tional problems. For example, Barker and
Ferry" treated the electron-phonon scattering
only to lowest order and included elastic impurity
scattering phenomenologically by introducing a
relaxation time. Even so only numerical solutions
of the equations were possible.

In view of the above remarks it is clear that the

field of nonlinear transport is in great need of
rigorous results against which approximate for-
mulations could be checked. We have studied a
simple model problem where the exact analysis
can be carried out much farther than is the case
in the electron-phonon problem. The system in-
vestigated in this work is the resonant-level
model (RLM)' in an arbitrarily strong uniform
electric field. The RLM describes a localized
level in a continuum: The conduction electrons
make transitions between the localized level and
the conduction band thus forming a scattering
resonance. From our point of view the RLM is
a model of an energy-dependent impurity scat-
tering mechanism with particularly convenient
mathematics related to it. The energy depen-
dence of the RLM scattering mechanism allows
one to study the intracollisional field effect in a
very simple context. '

Our calculation is briefly summarized as fol-
lows. The field-dependent Green functions for
free electrons in a uniform electric field are
used to construct the single-site field-dependent
T matrix for the RLM. By averaging over a di-
lute concentration of random resonant scatterers
a self-energy functional is constructed and then
used to evaluate the impurity-averaged field-de-
pendent Green function. Finally, we use the gen-
eralized Baym-Kadanoff formalism" to write
down the quantum transport equation for the RLM.
In the limit of slow temporal and spatial varia-
tions a nonlocal, field dePendent colli-sion inte-
gral is obtained. In the remainder of this Letter
we expand on this summary.

Field-dependent free Green functions. —The
equations of motion yield" the retarded Green
function for a uniform electric field [F(t)
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= -aA(t)/et ]:
G„'(k, k'; t, t') =-i e(t —t ) 5(k —k' —j,dt, F(t,))exp[-i J', dt, e(k —J, dt, F(t,))]

and

G„(k,k'; t, t') = -i 0(t —t') 5(k -k') exp[-i J,, dt, e(k —A(t, ))],

(1a)

(1b)

where the superscripts y and A. indicate that the
electric field has been represented by a scalar
or a vector potential, respectively. The advanced
function G, is obtained from (1) with the replace-
ment -i6(t - t') -i8(t' —t). The results (1a) and

(lb) are connected by the gauge transformation
introduced by Levinson' and recently elaborated
further by Calecki and Pottier. " The single-par-
ticle dispersion is denoted by e(k).

The spectral density is constructed according
to A —= i(G„—G, ):

A(k, R;7, T)

r+r j2
=exp[-~ I dt, ~(k-A(ti))1. (2)

In (2) we have used the Wigner frame [(x, x') -((x
-x'), (x, x')/2) =(r, R); k is the Fourier transform
of r] which is convenient in the description of
transport phenomena. In the limit of slow time
variations the Fourier transform of (2) with re-
spect to the difference variable v reduces to the
expression used earlier by Barker':

A(k, R; &u, T) = 2m 5[@;—e(k -A(T) ) ].
Single site field-depen-dent RLM Here we-

summarize the results of our earlier work. "
The RLM zero-field Green function is written
as G Gp + Gp TGp' when a static unif orm electric
field is turned on, the T matrix generalizes to

T~= V(k) V(k')/[(u -E —i r~(( )],
where E defines the position of the localized level
with respect to the conduction band and V(k} is
the hybridization matix element between the con-
duction band and the localized level. The level
width r'(&u) for a Gaussian model V(k) = V,

&exp(-A. 'k'/2) (A. is a parameter describing the
range of the interaction) is

r ~(u)) = Im P V(q, ) G„"(q„q„&u)V(q, )

qg q2

= r(~}exp(& ~'E') J dr Ai(-~), (5)

where I (~) is the zero-field level width. Here
a(E) = 2~/E'~' —A'E+', and Ai(x) is . the Airy func-
tion. " From (4) and (5) we infer the following
important conclusions. The coupling between the
conduction electrons and the resonant level [which

! is characterized by the level width r "(~)] vanish-
es for very high fields and it approaches its zexo-
field value as the energy is increased. Reference
11 offers a more complete discussion on these
points.

It should be noted that the exact single-site T
matrix available for the resonant-level model en-
ables one to obtain an explicit form for the trans-
port equations (see below). Much of the analysis
however can be carried out formally with a T
matrix which is known only implicitly. "

Dilute concentration of resonant scatterers. —pre
follow the standard procedure": The Dyson equa-
tion for a fixed configuration of impurities is
iterated and averaged term by term and finally
an infinite resummation is carried out to con-
struct a self -energy functional. Working to linear
order in the concentration of impurities c, one
obtains the following self-consistent equations:

G =G +G Z[G ]G

Z[ G'] (6)

d R exp[-i(q, —q, ) R] V(q, ) V(q, )
0 (u —E —E[ G+]

where

d'It exp[-i(q, —q, ) ~ R] V(q, ) V(q, )
( )0 w E —i I'$cu+EIt (()—

EI.G ']= Z «p[i(p - q) R] v(p) G '(p, q; ~) v(q) .
p, q

In the zero-field case the self-consistent equa-
tions (6) can be solved to yield Z[G ] = c V(q )'/
[~ -E —ir(&u)]. Thus the imaginary part of the
self-energy (which is related to the relaxation
time) displays the expected resonant structure.

For finite external fields the solution (6) is con-
siderably harder because the self-energy is non-
diagonal in its momentum labels. Rather than
analyzing (6) numerically we give here the follow-
ing approximate solution. Observe that in the
zero-field case the correct result can be obtained
by using the free Green function in the self-ener-
gy. Via this Ansatz the field-dePendent free
Green function in (6) yields
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Note that the level width appears with an energy
argument which is increased by EA ~~, where 8!!
is the distance traveled parallel to the uniform
electric field. Now recall the result obtained in
the single-site calculation: The level width ap-
proaches its zero-field value as the energy is
increased. Hence for field strengths occurring

i
G, ."(k, k', ~) =G„."(k,k; ~) «p(-

~it
'

where G ~(k, k; &u) is the time Fourier transform
of the field-dependent free Green function (1a).
It can be shown" that (8) is indeed a self-con-
sistent solution to (6) if Vis an insensitive func-
tion of k. It should also be noted that (8) reduces
to the correct zero-field result when E-O."

Equation (8) is one of our main results: To our
knowledge no previous explicit solutions to the
field-dependent Dyson equation exist. The re-
tarded and advanced Green functions as given by
(8) are needed in the construction of spectral den-
sities which form an input to the generalized
Baym-Kadanoff equations.

!
Transport equations for the RI.M.—Using the

in submicron devices, after a few angstroms
in the sample the charge carrier has been accel-
erated to such a high energy that we can approxi-
mate I' "(~+EIi )))

= I"(&u). The now trivial 8 inte-
gral yields a self-energy diagonal in the momen-
tum labels q, and an exact solution of Eqs. (6) is
possible. A lengthy but straightforward calcula-
tion gives

(8)

results (6) and (8) we can follow the prescription
for constructing a quantum transport equation
with the generalized Baym-Kadanoff formalism. "
Rather than giving the cumbersome equation in
full we pass to the limit where external perturba-
tions are slowly varying and examine the approxi-
mate equations for which the physics is more
transparent. We use the following procedure.
(1) All relevant quantities are assumed to be
slowly varying functions of the "center-of-mass"
variables (R, T). (2) A gradient expansion is per-
formed in these variables and only the lowest-
order terms are retained. Then, using the Gauss-
ian model interaction, we find

x V (p) V (p') 6(&I) —&I), F ~ (R R') ) [f(p R) f(p R )]

It is worth noting that in order to obtain in the
collision term the resonant prefactor characteris-
tic of the RLM one has to go beyond the Born
approximation and use the T matrix form (7) for
the self-energy [see also Eq. (4) ].

The transport equation (9) resembles the Boltz-
mann equation but the collision integral has two

important differences: it is nonlocal in space
and field dependent. The nonlocality results
from the finite range of the model interaction.
The field-dependent energy shifts in (9) are
easily understood if one recalls that the zero of
the potential energy of the system is position
dependent as a result of the applied electric field.
One should note that (9) cannot be reduced to a
relaxation-time form as in the case with the
ordinary impurity Boltzmann equation.

There is, however, a relaxation-time form for
a, localized interaction (A, -0), and an exact pre-
scription of the current is possible. In this limit

(9) reduces to

(V, ~-, V-, + F ~ &,)f(p, R)

=
I. 7(~p —F R)] '[f(p, R) -f.(~ )]. (1o)

Here I/&(c) =c V, /[(e -E)'+ I'] and f,(ez) is the
equilibrium distribution function. Using the solu-
tion of (10) in the expression for the current, I

pf (p), one finally obta ns"

j(R) =g~p J dse 'f, (p —sF7(e-„—F R)). (11)

In linear theory (11) gives the ordinary Boltz-
mann-equation result for the conductivity.

In summary, we have outlined a rigorous meth-
od to calculate nonlinear transport properties.
An application to a simple model system reveals
new and interesting structure in a Boltzmann-
type collision integral. Only in the limit of a
localized interaction and in linear theory does
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the transport equation (9) reduce to the ordinary
Boltzmann equation used earlier" to discuss the
transport properties of the RLM.
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In Table I, the value 1.601 should be replaced
by 1.275, and accordingly, the value 2.618 should
be replaced by 2.084.
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