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Numerical calculations on a model of localized interacting electrons are reported. A
Coulomb gap is found in the density of states for bare and dressed single-particle excita-
tions, which fills with increasing temperature. By making an analogy with a random-
field Ising spin-glass with 1/» interactions, evidence is found, in a modified Edwards-
Anderson order parameter, of glasslike order at low temperatures.
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The spatial distribution of electrons in localized
states is strongly influenced by the long-ranged
Coulomb repulsion between them. This causes
a depletion of the single-particle density of states
(DOS) near the Fermi energy. At zero tempera-
ture this density of states vanishes at the Fermi
energy but is nonzero elsewhere., This “soft”
gap is known as the Coulomb gap,'™ and at low
temperatures it leads to deviations from Mott’s
T4 law which assumes a flat density of states.
In this Letter, we report calculations of the DOS
for both bare and dressed single-particle excita-
tions from the ground state and examine the
evolution of the bare single-particle DOS with
temperature. We also explore the analogy be-
tween this model and a spin-glass, and have cal-
culated the susceptibility, order parameter, and
specific heat as a function of temperature.

A simplified Hamiltonian for a system of local-
ized electrons, for example in the impurity band
of a doped, compensated semiconductor, has the

form (in dimensionless units)

H=3n,@;+3 2onin; /75, (1)

i i

where n; is the number operator and ¢; is the
site energy including the potential of the neutral-
izing charge. Following Efros and Shklovskii®
we have simplified the Hamiltonian by neglecting
spin and tunneling between sites. Since the latter
is short ranged it can be neglected in studying
the low-energy and long-range behavior.

Efros and Shklovskii have shown that the dis-
tribution of single-site energies defined by E;
=q@;+2,;m,;/r;; is required to have a Coulomb
gap. Their deviation is based on the stability of
the ground state against all excitations which
move an electron from site ¢ to j, with energy
change E ;;=E; ~E;-1/r;;. This leads to a
bound on the bare single-particle DOS n,(E)
near the Fermi energy u of the form

n,(E) < |E| P~ (2)
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in D dimensions, where E is measured from pu. L = 20
By considering the stability of the ground state g “w f:l:‘“’ﬂ n“"’::, @
against excitations in which the surrounding elec- v : “ = ‘.
trons were allowed to relax, Efros* obtained a °l & . R T,
sharper bound of « ,(E) «exp{-|E,/E [V2} for G o e
D=3, 3 e ol 30

For our numerical calculations, we used an e e
even simpler model introduced by Efros* in - o g "

: : . 02| &

which the sites are put on a square or simple e o s
cubic lattice of unit lattice parameter and the 0 L . g

disorder is introduced by selecting the site en-
ergies ¢; from a rectangular distribution of width
2. The number of electrons was one-half the
number of sites and to maintain electrical neu-
trality each site had a charge of +3. The com-
puter program is based on the method of Baranov-
skii et al.> The electrons are thrown in at ran-
dom, and one-electron hops which lower the total
energy are made successively. Starting with dif-
ferent occupations but the same set of random en-
ergies, a distribution of final states resulted. A
large fraction of these states were identical and
had the lowest energy found, and so we believe
this common state to be the ground state of the
finite system. Even if it were not the ground
state, it may well be the state of physical interest.
We compared the DOS of the systems tested for
stability against only single-electron hops,
against single- and two-electron hops, and also

of the selected ground states, and found very
little systematic difference. The results shown
have been averaged over many configurations of
random energies. The samples used had mainly
16 X16 or 10Xx10 sites; other sizes were tried

but no size dependence of the properties at zero
temperature was found.

The single-particle DOS is shown for two- and
three-dimensional systems in Fig. 1. The form
of the Coulomb gap in three dimensions (3D) is
fitted well by the exponential form. For the 2D
samples the curve is clearly not linear close to
the Fermi energy, as predicted by (2), but has
a rather stronger gap. The results agree with
those obtained by Baranovskii et al.® for relative-
ly high excitation energy, but lie below their re-
sults for energies near u. We believe that this
difference arises because they used free bound-
aries.® We used periodic boundary conditions,
taking only the shortest distance between sites
in the repeated lattice. This gave results which
were much less sensitive to the size of the sam-
ple, and n,(E) could therefore be determined
more accurately at lower energies.

It has been pointed out*7 that at low tempera-
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FIG. 1. Bare (squares) and polaron (crosses) single-
particle densities of states for two- and three-dimen-
sional systems.

ture the important single-particle excitations
might not be bare, like those considered above,
but would rather be “electronic polarons.” If

an electron is added to a site, the system can
relax if nearby electrons move away, thereby
creating a polarization cloud. Mott” suggested
that the spectrum of such excitations should show
no Coulomb gap, according to Efros? it should
obey (2). It is difficult to define these polarons
precisely, and the following method was used to
calculate the polaron DOS »r,(E) plotted in Fig. 1.
An electron was added to a site and held there.

If it was possible to move another electron and
lower the system’s energy, the most favorable
transition was made, and this was repeated until
the system was stable against all one-electron
transitions. The energy of this final state above
the ground state was taken to be the polaron en-
ergy. The Coulomb gap for polarons is clearly
much narrower than that for bare excitations, but
it is still present. For the 2D systems, the
linear form (2) was a fair fit; the exponential
form and the parabola fitted the curves for 3D
about equally well.

The important point about the above definition
is that a polaron is essentially localized around
the selected site. In general, the ground state
and low-lying excited states with the added elec-
tron will have a lower energy and many of these
will have the selected site occupied. However,
such states involve the rearrangement of many
electrons and may therefore not be accessible
from the starting state at low temperature. This
picture of inaccessible configuration space is
typical of a glass, a subject to which we shall
return later.

The Monte Carlo calculations were extended to
a finite temperature T by using the algorithm of
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Metropolis et al.,® i.e., an electron hop requiring
an energy E is made with unit probability if £ <0
and with probability exp(=E/T) if E >0 (kg=1).
We have calculated the effect on n,(E) by starting
the system in a ground state and raising the tem-
perature T in intervals and allowing at each stage
many Monte Carlo steps (about 10° per site) to
ensure convergence. The distribution of single-
particle energies was calculated for the 2D sys-
tems and the results appear in Fig. 2. At the
lowest value of T=0.05, n,(E) has a well-defined
gap. This gap has closed appreciably by 7=0.1
until at 7=0.3 there is only a weak remnant, and
at 7=0.5 no gap at all. This shows that the Cou-
lomb gap is washed out at T'=0.3.

It is instructive to rewrite the lattice-gas Ham-
iltonian in an Ising form, Setting 0,°=n;-; we
get for the half-filled band

H=3,®,0%+3 25 0,%0,%/ry; (3)
i i =g

and the site energies ®; are now distributed

about zero energy. In this form the Hamiltonian
is that of an Ising model in a random field but

with long-range antiferromagnetic interactions.

It has been shown® that the random field is rele-
vant in Ising models for D <3 but to our knowl-
edge this model with long-range interactions has
not been studied in the spin-glass literature. We
have calculated the magnetic susceptibility, x.
The density of electrons plays the role of mag-
netization and the chemical potential u that of

the magnetic field. However, in our system it is
vital to maintain charge neutrality so upon adding
(or removing) electrons we add (or subtract) com-

Density of states

OEnergy !

FIG. 2. Bare single-particle density of states for a
two-dimensional system at various temperatures. The
lower curve in each case shows the density of occupied
states.
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pensating charge from each site. x (=dn/du) is
calculated from var(N)/2NT, where N is the total
number of electrons. The variance was obtained
from the distribution of N with time, electrons
being added or removed at random sites accord-
ing to the algorithm of Metropolis et al.® The
activation energies were calculated including the
effect of the compensating charge. The results
are shown in Fig, 3. x follows a Curie law above
T =0.3 at which point there is a change in slope.
At low temperatures, 7'<0.1, there are very few
electrons added or removed and the convergence
rapidly worsens so that we cannot determine the
limiting behavior as T —~0. We expect that, be-
cause of the vanishing of n,(E =0, T—~0), x—-0 as
T - 0 but these are not simply related because of
the correction to the positive charge distribution
contained in x. Note that in a glass phase, our
way of calculating x measures the change in elec-
tron density in a restrvicted region of configura-
tion space in response to an infinitesimal change
in p. This is in contrast to the thermodynamic
equilibrium value of dn/d ., which at T=0 is de-
fined in terms of the ground-state energies of the
N-1, N, and N +1 electron systems and is ex-
pected to be finite, but we were unable to com-
pute a reliable value because of fluctuations from
sample to sample. Parisi and Toulouse have sug-
gested'® that the equilibrium value of x is inde-
pendent of T and that the entropy is independent
of magnetic field below the glass transition.
This is consistent with a Coulomb gap which is
tied to 1 and whose form depends only on the
temperature.

The Edwards-Anderson order parameter, ¢(T)

FIG. 3. Susceptibility X and order parameter g,, for
B =2 (full line); the broken line is the order parameter
for B=0.5. The dotted curve for X is the high-tempera-
ture Curie law, and the vertical bars cover the range
of values obtained from different samples.



VoLUME 49, NUMBER 10

PHYSICAL REVIEW LETTERS

6 SEPTEMBER 1982

={(20,#),%)s, where the ¢ denotes a Monte Carlo
time average and S an average over samples, is
unsatisfactory in a system with random fields
since some spins are strongly preferentially
oriented by the random field.!* We have there-
fore modified this definition to give an order
parameter which vanishes in the absence of the
Coulomb interactions: g, ={[{(20,;%), -f(®,)]?)s,
where f(®,) is the average value of the spin at
gite ¢ in the absence of interaction. We calculated
q,, in Monte Carlo runs in which the number of
electrons was kept fixed and electron hops were
made as discussed previously. The results are
shown in Fig. 3 for two choices of the bandwidth
of random energies, B=2 and B=0.5. For the
narrower bandwidth there is a rapid rise in ¢q,,
at 7=0.1, In the other case, where the Coulomb
interactions are relatively less important, this
rise is less marked. g, is similar to the spin-
glass order parameter proposed by Morgenstern,
Binder, and Hornreich'! for a random-field,
short-range Ising model. They interpreted a
nonzero value of g, as evidence of spin-glass
order.

Lastly, we have calculated the specific heat ¢,
for our system (Fig. 3). At low temperatures we
find ¢, =aT. The value of « is quite large and
corresponds to a DOS of =0.4 per site. One con-
tribution will be from particle-hole excitations
which because of the Coulomb interaction appear
in our calculations to have a finite DOS at zero
energy (~0.2 per site).’? The remaining contribu-
tion to ¢, presumably comes from correlated
two-electron and more complicated hops. These
low-lying excitations cause gq,, to vary strongly
with temperature down to low temperatures.

In conclusion, our results show that the Cou-
lomb interaction between localized electrons
leads to a minimum in the single-particle den-
gity of states at the Fermi energy at tempera-
tures less than 0.3. The nonzero value of the
spin-glass order parameter ¢, at low tempera-

tures suggests that a glass transition has oc-
curred, although we do not have direct evidence
of a long-ranged cooperative effect. This glass
state may also appear in a dependence of the
electrical conductivity on the sample’s history,
with differences between samples cooled in an
electric field and without. Experiments to test
this would be most welcome.
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