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An analytical procedure has been developed for calculating the localization length de- ...
scribing the exponential growth of the representative resistance in a one-dimensional dis-
ordered system and the associated residual res.istance. The present results are com-
pared to numerical simulations performed using a novel set of recurrence relations which
provide a rapid and accurate method for computer studies of one-dimensional systems.
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According to Landauer' the dimensionl. ess re-
sistance R of a one-dimensional system is given
by 8 =T ' —1, where T is the transmissivity of
the l.inear chain. In a one-dimensional disordered
system of length L the resistance exhibits expo-
nential growth in that the average obeys the rela-
tion ln(R) —const&&L as the length becomes large. '
Many authors" have noted that the unrestricted
average (R) is not representative of the ensemble
since it is dominated by the most resistive, and

presumably most improbable, samples. A repre-
sentative average, R„, characterizing a finite
sampling procedure, will generally exhibit a
slower rate of growth. We define the localization
length L, as the parameter characterizing the ex-
ponential growth of the representative resistance:
in(R„)- 2L/L, . In this paper we present an ex-
pression for Lo which provides a remarkably ac-
curate description of numerical simulations. In
addition, we present a novel method for perform-
ing the numerical calculations which provides an
efficient way of doing the simulations as wel. l as
calculating other properties. '

We consider a compositionally disordered sys-
tem formed from two types of scatterers with
concentrations c, (called impurities) and c,= 1

c] respectively. We find an expression for Lo
by performing a restricted average over an en-

semble of systems in which the total. number 1V

of impurities is precisely specified. ' In other
words, we assert that it is extreme fluctuations
in the actual number of impurities that are re-
sponsible for the nonrepresentative nature of the
unrestricted average. This hypothesis is tested
by a comparison of the analytical results with
numerical simulations.

An unrestricted average (M~) of the total. trans-
fer matrix M~ describing a chain of l.ength L may
be expressed in terms of restricted averages
(M~)„(where the subscript N indicates that the
number of impurities is fixed) by the formula

It is straightforward to determine the unrestrict-
ed average. ' The overall transfer matrix of the
system is

(2)

where 0„ is the transfer matrix characterizing
site n and the matrix W [W»= exp(ih), W»
= exp(- ih), W» ——W» = Oj describes propagation
between adjacent sites in a lattice of unit spacing.
Since the sites are entirely independent the un-
restricted average of the transfer matrix is sim-
ply Eq. (2) with each transfer matrix replaced by
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cy0 + cg 0
p where the superscripts denote the

species. Making the substitution z = c,/(1 —c,) we
find

nal matrix formed from its eigenvalues and A
=A(z) is the diagonalizing matrix. Then

Q exp(Lv~)z~(OUI~)~
N=O

=W "+"A~(z)'A 'W (4)

= w '~+" (zwe"'+ wo"') w

The averaged transfer matrix in (3) may be writ-
ten in the form AAA ', where A = A(z). is a diago-

in which we have expressed the binomial coeffi-
cient in terms of the "entropy" 0„=—c„ln(c„)
—(1 —c„)ln(l —c~), where c„=N/L. The restrict-
ed averages (M~)„are proportional to the I&&'th

derivatives of the right-hand side of (3). Thus

6
A(z)~(z)'A-'(z)W „

2' i z"

where the integral is over a contour enclosing the
origin and avoiding the singularities of the inte-
grand. L and N are large and the asymptotic be-
havior may be determined by the steepest-de-
scent method. Since z "=exp(-Lc„ lnz), the sta-
tionary points are given by c„=d(ink)/d(lnz), X

being either one of the eigenvalues of the aver-
aged transfer matrix.

In accordance with the hypothesis that repre-
sentative values are determined by restricted
averages, we equate c„ to c„ the nominal con-
centration of impurity scatterers. For each so-
lution and eigenvalue there is a contribution to
(M~)„proportional to exp(L [In(X) —c, ln(z) —v„]}.
In general there are several solutions to the
equation for the stationary points; the localiza-
tion length is given by the root leading to the
greatest rate of growth.

We verify our predictions for the localization
length by comparing them with the results of com-
puter simulations. The calculations were done
for a lattice of ~-function potentials,

V(x) =+V„t(x -x„),
where the coefficients V„may have either of two
values V"' or V"'. For x„]&x &x„ the wave
function may be written

((x) =A exp(-', G„)cos[k(x -x„,) —2p„],
where A is arbitrary and the quantities G„and
p„may be obtained in terms of the initial. values
G, =O and an arbitrary initial phase p, by straight-
forward application of the transfer matrices ap-
propriate to the 6-function potentials. Using a
series of algebraic transformations' we have de-
veloped a recursion rel. ation for the quantities

!X„=tan(—,'cp„+~7T+k„,), where tank„= V„/2k,
which yields the exponent G„directly (cf. Peres
and co worke-rs') and thus is very suitabl. e for a
situation in which the wave function grows expo-
nentially with the length of the chain. We find
the result'

L 1+X
„-o &d„&+X„ /4&„

(8)

in which X„=~„,(X„, r„,) /(1-+X„,r, ), &u

= tan'(2k„+-, m), and r„= tan[k —(k„+k„,)/2].
Two independent solutions are obtained by choos-
ing @,=0 and p, =m. These may be combined to
form an eigenfunction having only an outgoing
wave at one end of the chain, from which we de-
rive' the expression for the resistance:

R = (expG+ expG' —2)/4,

where G and G' are the values of GL for the two

particular solutions just mentioned.
We determine L, by calculating G and G' for a

particular sequence of length I and employing
the relation I,,= 2L/lnR. [Strictly speaking I.o
should be defined in terms of an average with re-
spect to independently chosen sequences. While
some of the data presented are of this form, it
is rarely necessary to generate more than one
sequence since according to Eq. (8) G~ is the sum
of independent quantities (provided L»L, ) and
thus will, exhibit only conventional (I-,/I. )' ' fluc-
tuations. ]

Evaluation of the analytic results for the 6-
function model is straightforward but tedious. '
In terms of the variable y = c,c,(z+ 1)/(cp —c,)
the equation for the stationary points of the inte-
grand in (5) is

y'+ 2(c, —c,)y'+ [(c,—c,)' —2c,c, —a' —k]y + 2c,c [(c, —c ) —a —d] = O,

where a=v/II, f&=4k(vcotk —k)/II', d=2k cotk/U, V=c,U" &+c,v"', and II=V"'-V"' In terms of th
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solution to the cubic equation,

1/L, = Be[iq —c, ln(1+ c,/y) —c, ln(1 —c,/y)],

where

cos(q) = cos(k) + [sin(k)/2k] (V+ c,c,U/y).

Figure 1 shows our results for the case Vy 1y

V, =O, and for several values of k, the square
root of the dimensionl. ess energy. ' In all cases
I- p diverges as c, ' for c,—0 since the system
becomes ordered and states of all energies are
extended. In the important case of long wave-
lengths, this regime begins when c, &k at which
point the distance between the impurities exceeds
the wavelength and the localization is due to in-
dividual scattering events. For long wavelengths
+p increases when c, »0; for c,- 1 the system is
nearly ordered (and the energy is not in a band

gap) and L,-c, ', analogous to the low-concen-
tration regime, while for intermediate concentra-
tions I.p cy

' corresponding to a situation in
which the state is averaging over the impurities
and the localization is due to relative fluctuations
in the potential. (The averaging is responsible
for the increase in I, at a remarkably small con-
centration. ) This is the only regime in which
there is some discrepancy between the analytic
and numerical results (impurity fluctuations
rather than their concentrations are important).
For intermediate energies (as illustrated by the

case k = 1.5) L, ' - c,c, throughout the entire con-
centration range. For ~ —0 «1 I-p decreases
continuously with increasing c, since the increase
which occurs for small k does not happen if the
energy belongs to a band gap of the ordered lat-
tice of impurities. We find I-p c] fox cy«7T
while L, -c, ' ' for c, &(w —k)' '. The rapid
change in L, (by a factor of 40) as c, changes
from 1.5% to 6.5% is remarkable.

The energy dependence of I-, is illustrated in
Fig. 2. The localization length increases by an
order of magnitude with increasing energy, falls
precipitously for a narrow range (depending upon
concentration) within the forbidden band of the
ordered lattice of impurities, and then diverges'
as k-7t, corresponding to the energy for which
states are always extended. " (An effect of this
type may explain recent experiments in Bi.")
The explicit dependence' near the "mobility
point"'k =v is L, -(z-k) ' ' for w &k, and L,
—(g —z) ' for k & v, in agreement with Kantor and

Kepj tulnjk.
Andereck and Abrahams" have provided an

exact solution for a quantity I-,* describing the
growth of the average resistance Q) - exp(4L/
L,*). Since necessarily (R) & R„ there is the ex-
act result that Lp*- 2Lp. On the other hand,
Anderson et al. ' speculate, and Andereck and
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FIG. 1. L o (in units of the lattice constant) as a func-
tion of concentration for several energies. The solid
curves show our analytical results while the data"
points indicate the results of computer calculations.
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I IG. 2. L, o (in units of the lattice constant) as a func-
tion of energy for several concentrations. The solid
curves show our analytical results while the 'data"
points indicate the results of computer calculations.
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Abrahams" seem to confirm, that (R) =R„2,
which would imply I-,*=I-,. We find that this last
relation is valid except (a) in the fluctuation re-
gime illustrated in Fig. 2 by the values 0 =0.02
and c, = 0.2 where L,* is = 20/o greater than I,„
and (b) in the "forbidden band" regime (as de-
fined by the mean crystal) in which L,*=2L, or
(R) =R„. While the near equality between the
representative and average resistance is fairly
obvious when the localization length is very small
it is interesting that it holds exactly even in the
regime k -7T —0 where I-,-~.

The resistance depends linearly upon the length
when L «L, ." Thus, using (9), the Ohmic re-
sistivity p, is

p, = limR„/L=(4L) '[(G)+(t"')],
L ~0

where the averages are with respect to systems
satisfying I- «I-, . We find that in the middle of
the allowed" band p, = 1/L, and thus lnR„= 2p*
(cf. Ref. 3) while near the edges of the band p,
and 1/L, may differ by several. orders of mag-
nitude and thus the inverse localization length is
not simply related to the Ohmic (classical) re-
sistivity. According to our results one may ex-
pect quite a bizarre behavior as a function of
impurity concentration.

In summary, we have developed a quantitative-
ly accurate theory of the localization length in a
one-dimensional. random system. In addition,
we have presented a useful technique for corn-
puter studies of localization in one dimension
and have compared the "experimental" results
obtained with that technique to the analytical re-
sults.
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