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It is shown that many of the experimentally observed features of pattern formation in
Rayleigh-Benard convection near onset can be understood in terms of a two-dimensional
relaxational equation. In particular, it is shown that disordered roll patterns follow a
complicated dynamics that can require up to a hundred horizontal diffusion times to reach
equilibrium.

PACS numbers: 47.25.Mr

In attempting to understand the essential ways
in which nonlinear nonequilibrium systems be-
come turbulent, considerable experimental and
theoretical effort has been devoted to one of the
simplest systems, Rayleigh-Benard convection. '
While a fairly satisfactory understanding has
emerged for small-aspect-ratio cells, ' no such
understanding currently exists for the onset of
turbulence in large-aspect-ratio cells, whose
large lateral dimensions (compared with the
depth of the fluid) allow the excitation of long-
wavelength modes and the presence of defects.
An experiment in a large cylindrical cell shows
chaotic behavior at the onset of convection' while
a recent experiment in a large rectangular cell'
suggests that the fluid becomes clearly time de-

pendent only a finite distance above onset. Theo-
ry predicts that parallel rolls within a. certain
band of wave numbers are stable but makes no
prediction of the possible time dependence of
curved or disordered rolls.

In this Letter, we use a, two-dimensional equa-
tion' to study numerically the evolution and for-
mation of curved roll patterns (corresponding to
three-dimensional flow in the fluid) in large rec-
tangular cells just above the onset of convection.
Our model accurately reproduces the physics of
the Boussinesq equations' sufficiently close to on-
set and for sufficiently large-aspect-ratio cells.
Unlike most experiments to date, we determine
both the Nusselt number and the velocity field as
functions of time, permitting a more quantitative
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comparison of theory with the thermal measure-
ments of Ref. 3 and the visual observations of
Ref. 4. Although the model we use is relaxation-
al and incapable of truly nonperiodic behavior,
we find for disordered roll patterns complicated
long-lived transients which could be misconstrued
in optical measurements to be turbulence if ob-
served over short time scales.

Our numerical solutions also provide explicit
examples of how, in a simple model, lateral
boundaries and nonlinear terms select among the
various highly degenerate solutions to the linear
problem. ' These results will be of interest for
studying pattern formation in related problems
in which a continuous instability occurs at a fin-
ite wave number.

Near onset the Boussinesq equations can be
systematically expanded in the small parameter
e = (R -R,)/R„where R is the Hayleigh number
and R, is the critical Rayleigh number for a lat-
erally infinite container. As first shown in Ref.
5, the amplitude equation resulting from the low-
est-order solvability condition for this expansion'
can be made rotationally invariant by using a real
amplitude, ((x,y, 7), which includes the rapid
spatial oscillations of the rolls. Here x and y
are the physical spatial variables and v =et is a
slow time variable. The equation and boundary
conditions for g are'

s,g = eg —(6+q,')'0 —0',

(i =8„(=0,

where 6 = 8„„+„ is the Laplacian, q, is the criti-
cal wave number minimizing R„and 8„ is the
derivative normal to the boundary. (In what fol-
lows, we set q, = 1 so that a roll diameter is 2p).
This equation is valid for the experimentally at-
tained case of rigid (nonslip) surfaces' but was
recently shown to be incorrect for small Prandtl
numbers and for free surfaces for which the gen-
eration of vertical vorticity must be taken into ac-
count. " An important property of Eq. (1) is that
it is variationally derived from a I yapunov func-
tional,

&[4]= .' f d~dyi-~tC'+-'0'+[(&+ I)(]'), (2)

which decreases monotonically for all initial con-
ditions. ' Equation (1) is then purely relaxational
and any solution tends towards a time-indepen-
dent state which can be meta, stable or stable de-
pending on whether the corresponding value of
Eq. (2) is a local or global minimum.

We have numerically solved Eq. (1) with the

boundary conditions, Eq. (2), for rectangular geo-
metries with both random positive and negative
domains or parallel rolls for initial conditions
and for different values of e. Details concerning
our numerical method will be presented else-
where. "

For large aspect ratios (I'=L» 1, where L is
the smaller lateral dimension) and for small e

[e,«e«l, where e,=—(2z/I')' is the smallest e
for which nonzero solutions are stable], the ini-
tial amplitude evolves to a pattern such that most
rolls are normal to the boundaries (see Fig. 1).
This is in agreement with experiment' and with
the analysis of Ref. 8. For initial conditions con-
sisting of parallel rolls at the critical wave num-
ber q, = 1, a cross-roll instability eliminates
rolls parallel to the lateral boundary by creating
local rolls, also of wave number 1, perpendicu-
lar to those sides [see Fig. 1(a)]. This was first
predicted by Pomeau and Zaleski" and has not
yet been clearly observed in experiments. This
instability is confined to a, boundary layer' of
thickness 2m~ "', we find that the cross rolls are
stable to perturbations and do not grow into the
interior although the state, Fig. 1(a), is meta-
stable [Fig. 1(b) has a lower Lyapunov value, Eq.
(2)]. As seen in Figs. 1(b), 1(d), and 1(e), nor-
mality to the boundaries is frequently achieved
by forming roughly concentric rolls with a cor-
ner as the focus. A new feature not previously
observed or predicted is the tendency of the rolls
to form a domain of straight segments away from
the lateral boundaries [see Figs. 1(b) and 1(e)].
%e predict that truly circular concentric rolls,
such as those discussed in Ref. 8, do not occur
at low Rayleigh number.

For random initial conditions, the smallest
length scales anneal out rapidly on the order of
a vertical diffusion time [7- 1 in the units of Eq.
(1)] and rolls normal to all boundaries grow in
towards the center of the cell, creating a disor-
dered texture. There then follows a long and
complicated evolution in which the pattern sim-
plifies through migration and annihilation of
defects in a manner similar to that described in
the experiments of Ref. 4 [see Fig. 1(e), an inter-
mediate state, which evolves into the stationary
state, Fig. 1(f)]. The primary mechanism of de-
fect motion is gliding perpendicular to the roll
axis. The final equilibrium state favors defects
or grain boundaries at corners or along the short-
er sides [Figs. 1(b) and 1(f)], although during
evolution quite complicated defects such as dis-
clinations occur [see the lower right corner of
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FIG. 1. Contour plots of the amplitude field, (E()(x,y, &), at various times for (a), (b), (e), and (f) & =0,10 and
(c) and (d) &=0.90. The cells in (a)-(d) have an aspect ratio of 16 while the cells in (e) and (f) have aspect ratios
of 29.2 and 19.5 to match the cell of Hef. 4. The initial conditions were parallel rolls for (a) and (c) and random
domains of opposite sign for (b) and (e). The solid and dotted contours represent positive and negative values at

and 16 the maximum amplitude. The contours correspond to vertical velocity contours in optical experi-
ments. The values of the time at which equilibrium was reached (7), the Lyapunov functional (F), and the Nusselt
number (V) are given. The state in (e) has not reached equilibrium and is evolving into the equilibrium state, (f).
Here equilibrium is defined to occur when d In(E)/d7. is smaller than 10

Fig. 1(e)]. The normality of the rolls to the
boundaries and the low density of defects in the
stationary state are consistent with the theoreti-
cal analysis of Ref. 8. A repeated run on both
the square and rectangular cells of Fig. 1 with
e = 0.1 but with different random initial conditions
also leads to the states shown in Figs. 1(b) and
1(f) which suggests that, for small e, the nonlin-
ear term and confining latera, l wa. lls select one
from the large multiplicity of states suggested
by a linear analysis. '

Although the derivation of Eq. (1) is physically
meaningful only for small c, we have also inves-
tigated its solutions for larger c in which case
qualitatively different pattern formation occurs.
For e = 0.9 and 1" = 16, parallel rolls relax only a
little and the cross-roll instability is suppressed
[see Fig. 1(c)]. This seems related to the fact
that the boundary layer is now less than a roll
diameter. The symmetry of the state, Fig. 1(c),
and its low Lyapunov value [compare Fig. 1(d)]
suggest that this is the most stable state for this

value of s. Indeed if the state of Fig. 1(b) is used
as an initia. l condition for a run with e =0.9, the
pattern remains essentially unchanged and the
I yapunov functional decreases to a value of I
= —275, still greater than that of Fig. 1(c). Ran-
dom initial conditions lead to disordered textures
such as the equilibrium state, Fig. 1(d), which
are more highly curved and have a higher density
of defects than the low-& equilibrium states. The
evolution to the state in Fig. 1(d) is highly con-
strained or "frozen" in that after the annea. ling
out of small length scales, the texture essential-
ly has reached equilibrium. This corresponds to
falling into the nearest of many local minima of
the Lyapunov functional, Eq. (2). If the station-
ary state of Fig. 1(d) is used as an initial condi-
tion for a run with e =0.1, the texture rapidly
"melts" and evolves towards the state in Fig.
1(b). This suggests that disordered textures are
most readily annealed by bringing the Hayleigh
number close to the critical value, R, .

The time evolution for the la,rge cells of Figs.
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1(b) and 1(f) confirms the experimental observa-
tion' that the time scale for reaching equilibrium
starting from a disordered pattern is often an or-
der of magnitude or more greater than a horizon-
tal diffusion time (~» I'). These results also
demonstrate that complicated defect motion can
occur without taking into account the generation
of vertical vorticity. " A careful examination of
the value of the Lyapunov functional as a function
of time during these runs showed that it is strict-
ly den. easi~ at all times. This rules out the
possibility that the long time scale arises from
rare computer-noise-induced transitions (over
barriers significantly larger than the integrating
accuracy), from metastable to successively low-
er states. Instead, this behavior must arise from
a complicated dynamics in a large phase space
(the "glass" hypothesis of Ref. 10). Presumably
the same conclusion holds for experiment. The
numerical evidence is insufficient to determine
whether the time scale for attaining equilibrium
scales with 1"'. We have also studied as a func-
tion of time the Nusselt number, N=1+ (1+v) '
x(g') where ( ~ ~ ~ ) denotes an average over hori-
zontal coordinates. The Nusselt number turned
out to be a strictly incrensirg function of time so
that, in this model, the equilibrium state is the
one which maximizes the heat transport from the
lower to upper plate. These results are incom-
patible with the clearly nonrelaxational time de-
pendence observed immediately above onset in
large cylindrical cells. ' More experiments and
numerical studies" will be needed to determine
whether a combination of cylindrical geometry
and higher-order terms can produce this turbu-
lence.

In summary, our numerical investigation of a
relaxational amplitude equation confirms many of
the observed features of pattern formation near
onset in large rectangular cells, especially that
a long time may be needed to reach a stationary
state. It would be fruitful to investigate experi-
mentally some of the predictions suggested by
our model (especially in high-Prandtl-number

fluids and for Rayleigh numbers below the onset
of secondary time-dependent instabilities') such
as the confinement of the cross-roll instability to
a boundary layer of size e "', the monotonically
increasing Nusselt number, the specific lowest
Lyapunov states of Figs. 1(b) and 1(f), the forma-
tion of straight roll domains away from the bound-
ary layer, and the increasing rigidity and density
of defects for higher-r patterns.
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