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The temperature-dependent thermal conductivity and the charge relaxation time of a
strong-coupling superconductor are determined from solutions to the Eliashberg equa-
tions and a kinetic equation for the distribution function. The results yield a pronounced
maximum at low temperatures in the thermal conductivity of pure Pb and a gradual dis-
appearance of the maximum with increasing amounts of impurity scattering.

PACS numbers: 74.30.Ek, 72.10.Bg, 74.20.Fg

Shortly after the advent of the BCS theory of
superconductivity, considerable effort, starting
with the work of Bardeen, Rickayzen, and Te-
wordt, ' went into explaining the observed tem-
perature dependence of the electronic contribu-
tion to the thermal conductivity K, (T) and the
sparked difference in the observed behavior of
weak- and strong-coupling superconductors im-
mediately below the transition temperature T, .
In the case of very pure Pb the slope of the ther-
mal conductivity ratio v, (T)/K„(T), as a function
of T/T„was found experimentally to be approxi-
mately 9, ' compared to a slope of about 1.6 (Ref.
3) for a typical weak-coupling superconductor
like Sn, K„(T) being the normal-state conductiv-
ity at the temperature T. The explanation of
this dramatic difference was given by Ambegao-
kar and Tewordt, 4 who derived a kinetic equation
valid for strong-coupling superconductors, and

by Ambegaokar and Woo, ' who calculated the
thermal conductivity in the relaxation-time ap-
proximation and obtained a slope of about 11 at
Tc'

The renewed interest in nonequilibrium super-
conductivity in recent years has mainly focused
on those nonequilibrium properties that are pecu-
liar to the superconducting state, such as charge
imbalance and gap relaxation. There exist, how-

ever, a number of reasons for reconsidering the
thermal conductivity: (1) The kinetic equations
describing thermal transport in superconductors
with strong pair breaking have been derived only
in the limiting cases where electrons are scat-
tered solely by phonons4 or solely by nonmagnetic
and magnetic impurities. (2) The kinetic equa-
tion for pure strong-coupling superconductors'
has never been solved. All the numerical calcu-
lations based on this equation, of which we are
aware, have employed the relaxation-time ap-
proximation, which does not allow one to assess
the validity of the approximation. (3) The kinetic
-equations that describe electronic thermal con-

ductivity and charge imbalance possess identical
electron-phonon collision operators in the ab-
sence of band anisotropy. The equations differ
only in the driving terms, which have opposite
parity like in the case of electrical and thermal
conductivity of normal metals. Just as these
normal-state transport coefficients are related
by the temperature-dependent Lorenz number,
we can relate the thermal-transport and charge-
relaxation times by a temperature-dependent
function, which is universal for weak-coupling
superconductors, but may differ for strong-
coupling materials.

A kinetic equation for the case of charge im-
balance in strong-coupling superconductors has
been derived recently by Beyer Nielsen et al. ,

'
who generalized the equation of Schmid and
Schon' to allow for strong coupling. For the
case of thermal conductivity we have derived a
similar kinetic equation which includes elec-
tron-phonon scattering as well as collision terms
arising from scattering against ordinary and

magnetic impurities. The details of the deriva-
tion will be published elsewhere. ' The collision
terms are not independent, since the generalized
densities of states that appear in them are af-
fected by a combination of all pair-breaking
processes, irrespective of whether they originate
in electron-phonon collisions, spin-flip scatter-
ing, or superf low. The kinetic equation which
we have derived contains an electron-phonon
collision operator, which differs in one respect
from that of Ambegaokar and Tewordt, who ne-
glected certain small terms, which they inter-
preted as originating in a motion of the conden-
sate. Such terms arose naturally within the
Kubo formalism employed by these authors but
are absent in our approach. Our kinetic equa-
tion differs from theirs by terms in the scatter-
ing-in part of the collision operator exhibited be-
low. When solving the kinetic equation we have

explicitly verified that these terms play no prac-
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tical role on account of their smallness.
In this Letter we present a general kinetic equa-

tion for the thermal conductivity of strong-coup-
ling superconductors when phonons as well as
nonmagnetic and magnetic impurities are present.
We also give results of numerically solving the
equation for a model electron-phonon coupling
suitable for Pb. Near T, we determine a slope
of about 7.2 for K, /K„, in good agreement with
experiment, ' but somewhat different from the
approximate result of Ambegaokar and Woo. '
At lower temperatures we find that the thermal
conductivity of pure Pb begins to rise again,
reaching a maximum which is higher than the
value of the thermal conductivity at T, (Fig. 1).
When impurities are added this maximum is
shifted towards higher temperatures and eventual-
ly disappears (Fig. 2). In the presence of two

!
different scattering mechanisms, such as im-

purities and phonons, the electronic part of the
thermal resistivity is not simply the sum of the
resistivities calculated for each scattering
mechanism considered separately. The differ-
ence, commonly referred to as the deviation
from Matthiessen's rule (DMR), may be sizable.
In the present work we find the DMR to be up to
30% of the total resistivity. Finally, we have per-
formed the first strong-coupling calculation of
charge imbalance for the case of tunnel injection
and compared with the weak-coupling result
(Fig. 3).

In the following we denote the distribution func-
tion by f and we introduce the usual deviation
function (r, which for thermal conductivity is de-
fined by f=f, +f (1 -f )P ~ VTg, where f, is the
Fermi function and P a, unit vector in momentum

space, while V'T is the temperature gradient.
When band anisotropy is neglected the kinetic
equation for thermal conductivity becomes

E(E) = —(2IEmZE -2 IEmI + ' ' + ' '
II(E)

imp S

OO NN'
+ dE R(E E)(N,'-R')(N"-R")! 1+ ' ' (E')

QO NX, '

where we have used the fact that at low temperatures the momentum of the phonons may be neglected
compared with the Fermi momentum. The quantity B(E,E ) is given in terms of the usual electron-
phonon coupling function n'E as

coshE' /2T
! osh(E/21„) sinh(! E, E!/2T) (2)

and 7
p

and ~, are the scatte ring times for non-
magnetic and magnetic impurities, respectively.
The functions Z and y are the complex renormal-
ization and gap functions which we obtain from
numerical solutions of the Eliashberg equation,
and N; and R,. (i=1, 2) are generalized densities
of states which include smearing effects due to
pair breaking. " The function X(E) is the driving
term, which in the case of thermal conductivity
is X(E) =(NI' -R, ')uFE/T', where ~ z is the (un-
renormalized) Fermi velocity. For charge re-
laxation the electron-phonon part of the collision
term is identical, but the nonmagnetic-impurity-
scattering term is absent and the magnetic one
replaced by

(I/~, ) [N,'+R, ' —(N, ' —R,')'+(N, N, +R,R,)'jj.

The driving term for charge relaxation due to
tunnel injection is proportional to fo(E —e V) -f,(E
+eV), where V is the injection voltage. It follows
that ther mal conductivity and charge relaxation
are described by distribution functions that are

! odd and even in F., respectively. In the absence
of impurity scattering a comparison with the
kinetic equation derived by Ambegaokar and Te-
wordt' shows that it is identical to Eq. (1) except
for the N,N, '/N, ¹ term. The thermal conductiv-
ity K ls

N(0)v F dE(N, ' -R,'),
( / ), (3)

and the charge imbalance time 7~+ is given by
a similar integral which apart from the absence
of the factor of F- under the integral differs only
by a constant factor from (3). Here N(0) is the
(unrenormalized) normal density of states for a,

single spin at the Fermi surface.
We now present the solution for thermal con-

ductivity and charge relaxation in the strong-
coupling superconductor Pb, with nonmagnetic
impurities included. To do this we use the model
for the effective electron-phonon coupling n'E
that is discussed by Scalapino, ' but we include
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FIG. 1. The temperature dependence of the electronic
thermal conductivity w for pure superconductors,
normalized to the value at T, (instead of the value at T).
Curve A, is the result for Pb and curve B the result for
a weak-coupling superconductor.

a Debye tail for frequencies below the transverse
peak, o.'F(E) = 2.75x 10 'E' (E is measured in
millielectronvolts). The Debye tail is only im-
portant at low temperatures, below T( 0.4T„
where it causes the turnover and subsequent ex-
ponential decrease of z, (T).

Figure I shows our calculated ~, for a pure
weak-coupling superconductor within the Debye
model and for pure Pb, normalized to its value
at T, . Near T, the curves are very different,
the weak-coupling result increasing with decreas-
ing temperature while the curve for Pb decreases
because of the rapid increase in the gap and the
strong energy dependence of the electron-phonon
scattering rate. The weak-coupling result has a
maximum at T=0.3T, and then falls off very
rapidly because of the exponential freezing out of
the number of quasiparticles. The behavior for
Pb is very different, since K, shows a minimum
at T=o.7 T, and then increases very rapidly, as
a result of the decrease in the number of phonons.
Below the maximum at T=0.25T, the thermal
conductivity eventually drops to zero. Figure 2

shows the influence of impurities, which is con-

veniently discussed in terms of the parameter c
/ReZ(0)T; ~, w;„being the inelastic relaxa-

tion time at T, and at the Fermi energy. For
our model electron-phonon scattering ReZ(0)/
T j fi T~ 0.15. It is seen that curves B and C fol-
low the c =0 curve down to T =0.6T, . The tem-
perature dependence below 0.6T, depends criti-
cally on the value of c, but the general behavior
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FIG. 3. Plot of the quantity 4~„/r ReZ(0)7+» as a
function of the energy gap & in units of the temperature
T. The dashed curve shows the result for a weak-coup-
ling superconductor, while the solid curve shows the
result for Pb. In the strong-coupling case g is the
value of the real part of the gap function cp/X at the
gap edge. The parameter Tjp is the normal-state in-
elastic relaxation time at 7' and at the Fermi energy.

FIG. 2. The temperature dependence of the electronic
thermal conductivity K for Pb, normalized to the value
at T„ for various impurity concentrations in terms of
c =a,.„/ReZ(0)v;~&. A, c =0; B, c=0.0073; C, c=0.073;
B, c=0.73; E, c=73.
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is that if c~ 1, K, has a maximum. If c =1 then
~, always decreases with decreasing tempera-
ture.

Recently Mezahov-Deglin" measured ~, in pure
Pb and observed a maximum near T = 0.3T, at-
tributed to lattice conduction. Our calculations
show that the maximum in the heat conductivity
may be explained purely in terms of the electron-
ic contribution, but we cannot at the moment con-
clude which mechanism is the more important,
as the impurity time ~;

&
cannot be estimated

from the available experimental information. "
Turning now to the case of charge imbalance

we exhibit in Fig. 3 the charge relaxation rate
T ~ ' for Pb, for a constant injection voltage V

equal to ten times the T =0 gap energy A(0). The
dashed curve is the result for a weak-coupling
superconductor in the Debye model while the
solid curve is the result for Pb. In both cases
the rate has been normalized to the T;„' appro-
priate to the two different a'E. It is seen that the
broadening of quasiparticle states leads to a larg-
er charge relaxation rate than in weak-coupling
superconductors. A comparison with experiment
shows that the calculated value of wz* at T =0.6T,
is 30/o larger than that measured by Clarke and

Paterson. " The calculation shows a fast rise of

Tz* at lower temperatures, much faster than that
observed in the experiment. This may be due to
our neglect of gap anisotropy, which excludes
charge relaxation due to elastic scattering. Fur-

ther experiments on Pb to test this would clearly
be desirable.
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